rromb patrickvonplaten commited on
Commit
4793ae4
·
1 Parent(s): a39e446

[Diffusers docs] Correct some diffusers code snippet (#16)

Browse files

- Correct some diffusers docs (c468d0c3e50feb99266c88ff216754031bb80e4c)


Co-authored-by: Patrick von Platen <[email protected]>

Files changed (1) hide show
  1. README.md +46 -2
README.md CHANGED
@@ -48,7 +48,7 @@ The SDXL base model performs significantly better than the previous variants, an
48
 
49
  ### 🧨 Diffusers
50
 
51
- Make sure to upgrade diffusers to >= 0.18.0:
52
  ```
53
  pip install diffusers --upgrade
54
  ```
@@ -58,7 +58,8 @@ In addition make sure to install `transformers`, `safetensors`, `accelerate` as
58
  pip install invisible_watermark transformers accelerate safetensors
59
  ```
60
 
61
- You can use the model then as follows
 
62
  ```py
63
  from diffusers import DiffusionPipeline
64
  import torch
@@ -74,6 +75,48 @@ prompt = "An astronaut riding a green horse"
74
  images = pipe(prompt=prompt).images[0]
75
  ```
76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
  When using `torch >= 2.0`, you can improve the inference speed by 20-30% with torch.compile. Simple wrap the unet with torch compile before running the pipeline:
78
  ```py
79
  pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
@@ -87,6 +130,7 @@ instead of `.to("cuda")`:
87
  + pipe.enable_model_cpu_offload()
88
  ```
89
 
 
90
 
91
  ### Optimum
92
  [Optimum](https://github.com/huggingface/optimum) provides a Stable Diffusion pipeline compatible with both [OpenVINO](https://docs.openvino.ai/latest/index.html) and [ONNX Runtime](https://onnxruntime.ai/).
 
48
 
49
  ### 🧨 Diffusers
50
 
51
+ Make sure to upgrade diffusers to >= 0.19.0:
52
  ```
53
  pip install diffusers --upgrade
54
  ```
 
58
  pip install invisible_watermark transformers accelerate safetensors
59
  ```
60
 
61
+ To just use the base model, you can run:
62
+
63
  ```py
64
  from diffusers import DiffusionPipeline
65
  import torch
 
75
  images = pipe(prompt=prompt).images[0]
76
  ```
77
 
78
+ To use the whole base + refiner pipeline as an ensemble of experts you can run:
79
+
80
+ ```py
81
+ from diffusers import DiffusionPipeline
82
+ import torch
83
+
84
+ # load both base & refiner
85
+ base = DiffusionPipeline.from_pretrained(
86
+ "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
87
+ )
88
+ base.to("cuda")
89
+ refiner = DiffusionPipeline.from_pretrained(
90
+ "stabilityai/stable-diffusion-xl-refiner-1.0",
91
+ text_encoder_2=base.text_encoder_2,
92
+ vae=base.vae,
93
+ torch_dtype=torch.float16,
94
+ use_safetensors=True,
95
+ variant="fp16",
96
+ )
97
+ refiner.to("cuda")
98
+
99
+ # Define how many steps and what % of steps to be run on each experts (80/20) here
100
+ n_steps = 40
101
+ high_noise_frac = 0.8
102
+
103
+ prompt = "A majestic lion jumping from a big stone at night"
104
+
105
+ # run both experts
106
+ image = base(
107
+ prompt=prompt,
108
+ num_inference_steps=n_steps,
109
+ denoising_end=high_noise_frac,
110
+ output_type="latent",
111
+ ).images
112
+ image = refiner(
113
+ prompt=prompt,
114
+ num_inference_steps=n_steps,
115
+ denoising_start=high_noise_frac,
116
+ image=image,
117
+ ).images[0]
118
+ ```
119
+
120
  When using `torch >= 2.0`, you can improve the inference speed by 20-30% with torch.compile. Simple wrap the unet with torch compile before running the pipeline:
121
  ```py
122
  pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
 
130
  + pipe.enable_model_cpu_offload()
131
  ```
132
 
133
+ For more information on how to use Stable Diffusion XL, please have a look at [the Stable Diffusion XL Docs](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl).
134
 
135
  ### Optimum
136
  [Optimum](https://github.com/huggingface/optimum) provides a Stable Diffusion pipeline compatible with both [OpenVINO](https://docs.openvino.ai/latest/index.html) and [ONNX Runtime](https://onnxruntime.ai/).