reshinthadith commited on
Commit
414e73c
·
1 Parent(s): bc83af7

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - bigcode/starcoderdata
4
+ language:
5
+ - code
6
+ tags:
7
+ - causal-lm
8
+ license: cc-by-sa-4.0
9
+ ---
10
+ # `StableCode-Completion-Alpha-3B`
11
+
12
+ ## Model Description
13
+
14
+ `StableCode-Completion-Alpha-3B` is a 3 billion parameter decoder-only code completion model pre-trained on diverse set of programming languages that topped the stackoverflow developer survey.
15
+
16
+ ## Usage
17
+ The model is intended to do single/multiline code completion from a long context window upto 4k tokens.
18
+ Get started generating code with `StableCode-Completion-Alpha-3B-4k` by using the following code snippet:
19
+
20
+ ```python
21
+ from transformers import AutoModelForCausalLM, AutoTokenizer
22
+ tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablecode-completion-alpha-3b-4k")
23
+ model = AutoModelForCausalLM.from_pretrained(
24
+ "stabilityai/stablecode-completion-alpha-3b-4k",
25
+ trust_remote_code=True,
26
+ torch_dtype="auto",
27
+ )
28
+ model.cuda()
29
+ inputs = tokenizer("import torch\nimport torch.nn as nn", return_tensors="pt").to("cuda")
30
+ tokens = model.generate(
31
+ **inputs,
32
+ max_new_tokens=48,
33
+ temperature=0.2,
34
+ do_sample=True,
35
+ )
36
+ print(tokenizer.decode(tokens[0], skip_special_tokens=True))
37
+ ```
38
+
39
+ ## Model Details
40
+
41
+ * **Developed by**: [Stability AI](https://stability.ai/)
42
+ * **Model type**: `StableCode-Completion-Alpha-3B-4k` models are auto-regressive language models based on the transformer decoder architecture.
43
+ * **Language(s)**: Code
44
+ * **Library**: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox)
45
+ * **License**: Model checkpoints are licensed under the Creative Commons license ([CC BY-SA-4.0](https://creativecommons.org/licenses/by-sa/4.0/)). Under this license, you must give [credit](https://creativecommons.org/licenses/by/4.0/#) to Stability AI, provide a link to the license, and [indicate if changes were made](https://creativecommons.org/licenses/by/4.0/#). You may do so in any reasonable manner, but not in any way that suggests the Stability AI endorses you or your use.
46
+ * **Contact**: For questions and comments about the model, please email `[email protected]`
47
+
48
+ ### Model Architecture
49
+
50
+ | Parameters | Hidden Size | Layers | Heads | Sequence Length |
51
+ |----------------|-------------|--------|-------|-----------------|
52
+ | 2,796,431,360 | 2560 | 32 | 32 | 4096 |
53
+
54
+
55
+ * **Decoder Layer**: Parallel Attention and MLP residuals with a single input LayerNorm ([Wang & Komatsuzaki, 2021](https://github.com/kingoflolz/mesh-transformer-jax/tree/master))
56
+ * **Position Embeddings**: Rotary Position Embeddings ([Su et al., 2021](https://arxiv.org/abs/2104.09864))
57
+ * **Bias**: LayerNorm bias terms only
58
+
59
+ ## Training
60
+
61
+ `StableCode-Completion-Alpha-3B-4k` is pre-trained at a context length of 4096 for 300 billion tokens on the `bigcode/starcoder-data`.
62
+
63
+ ### Training Dataset
64
+
65
+ The first pre-training stage relies on 300B tokens sourced from various top programming languages occuring in the stackoverflow developer survey present in the `starcoder-data` dataset.
66
+
67
+ ### Training Procedure
68
+
69
+ The model is pre-trained on the dataset mixes mentioned above in mixed-precision BF16), optimized with AdamW, and trained using the [StarCoder](https://huggingface.co/bigcode/starcoder) tokenizer with a vocabulary size of 49k.
70
+
71
+ * **Software**: We use a fork of gpt-neox ([EleutherAI, 2021](https://github.com/EleutherAI/gpt-neox)) and train under 2D parallelism (Data and Tensor Parallel) with ZeRO-1 ([Rajbhandari et al., 2019](https://arxiv.org/abs/1910.02054v3)) and rely on flash-attention as well as rotary embedding kernels from FlashAttention-2 ([Dao et al., 2023](https://tridao.me/publications/flash2/flash2.pdf))
72
+
73
+ ## Use and Limitations
74
+
75
+ ### Intended Use
76
+
77
+
78
+ ### Limitations and bias