File size: 11,180 Bytes
94c4ce7 096fe06 94c4ce7 8613316 94c4ce7 8613316 94c4ce7 8820aad 94c4ce7 096fe06 94c4ce7 8613316 94c4ce7 4ef7135 94c4ce7 8613316 94c4ce7 67dc96c 94c4ce7 67dc96c 94c4ce7 c89d7d1 94c4ce7 10522cd 94c4ce7 67dc96c 94c4ce7 67dc96c 94c4ce7 986ce91 94c4ce7 e4652cb 94c4ce7 28b4cfb 986ce91 94c4ce7 10522cd 8820aad 10522cd 94c4ce7 6f2d2f8 94c4ce7 10522cd f2e1a8b 4a14de9 f2e1a8b 10522cd 354cffb 10522cd 4bdc987 10522cd 94c4ce7 10522cd 94c4ce7 74da6f5 94c4ce7 c5108ad 430cf0d 096fe06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
---
language:
- en
license: other
tags:
- causal-lm
datasets:
- HuggingFaceH4/ultrachat_200k
- allenai/ultrafeedback_binarized_cleaned
- meta-math/MetaMathQA
- WizardLM/WizardLM_evol_instruct_V2_196k
- openchat/openchat_sharegpt4_dataset
- LDJnr/Capybara
- Intel/orca_dpo_pairs
- hkust-nlp/deita-10k-v0
extra_gated_fields:
Name: text
Email: text
Country: text
Organization or Affiliation: text
I ALLOW Stability AI to email me about new model releases: checkbox
model-index:
- name: stablelm-2-zephyr-1_6b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 43.69
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-2-zephyr-1_6b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 69.3
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-2-zephyr-1_6b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 42.03
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-2-zephyr-1_6b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 45.11
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-2-zephyr-1_6b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.48
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-2-zephyr-1_6b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 35.33
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-2-zephyr-1_6b
name: Open LLM Leaderboard
---
# `StableLM 2 Zephyr 1.6B`
## Model Description
`Stable LM 2 Zephyr 1.6B` is a 1.6 billion parameter instruction tuned language model inspired by [HugginFaceH4's Zephyr 7B](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) training pipeline. The model is trained on a mix of publicly available datasets and synthetic datasets, utilizing [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290).
## Usage
`StableLM 2 Zephyr 1.6B` uses the following instruction format:
```
<|user|>
Which famous math number begins with 1.6 ...?<|endoftext|>
<|assistant|>
The number you are referring to is 1.618033988749895. This is the famous value known as the golden ratio<|endoftext|>
```
This format is also available through the tokenizer's `apply_chat_template` method:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-zephyr-1_6b')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-zephyr-1_6b',
device_map="auto"
)
prompt = [{'role': 'user', 'content': 'Which famous math number begins with 1.6 ...?'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
print(tokenizer.decode(tokens[0], skip_special_tokens=False))
```
## Model Details
* **Developed by**: [Stability AI](https://stability.ai/)
* **Model type**: `StableLM 2 Zephyr 1.6B` model is an auto-regressive language model based on the transformer decoder architecture.
* **Language(s)**: English
* **Paper**: [Stable LM 2 1.6B Technical Report](https://drive.google.com/file/d/1JYJHszhS8EFChTbNAf8xmqhKjogWRrQF/view?usp=sharing)
* **Library**: [Alignment Handbook](https://github.com/huggingface/alignment-handbook.git)
* **Finetuned from model**: [https://huggingface.co/stabilityai/stablelm-2-1_6b](https://huggingface.co/stabilityai/stablelm-2-1_6b)
* **License**: [StabilityAI Non-Commercial Research Community License](https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b/blob/main/LICENSE). If you want to use this model for your commercial products or purposes, please contact us [here](https://stability.ai/contact) to learn more.
* **Contact**: For questions and comments about the model, please email `[email protected]`
### Training Dataset
The dataset is comprised of a mixture of open datasets large-scale datasets available on the [HuggingFace Hub](https://huggingface.co/datasets):
1. SFT Datasets
- HuggingFaceH4/ultrachat_200k
- meta-math/MetaMathQA
- WizardLM/WizardLM_evol_instruct_V2_196k
- Open-Orca/SlimOrca
- openchat/openchat_sharegpt4_dataset
- LDJnr/Capybara
- hkust-nlp/deita-10k-v0
2. Preference Datasets:
- allenai/ultrafeedback_binarized_cleaned
- Intel/orca_dpo_pairs
## Performance
### MT-Bench
<img src="https://cdn-uploads.huggingface.co/production/uploads/61b2bf4f5b1f7cad1799cfbb/QH00HVM3lg-5f17U_py4K.png" alt="mt_bench_plot" width="600"/>
| Model | Size | MT-Bench |
|-------------------------|------|----------|
| Mistral-7B-Instruct-v0.2| 7B | 7.61 |
| Llama2-Chat | 70B | 6.86 |
| stablelm-zephyr-3b | 3B | 6.64 |
| MPT-30B-Chat | 30B | 6.39 |
| **stablelm-2-zephyr-1.6b** | 1.6B | 5.42 |
| Falcon-40B-Instruct | 40B | 5.17 |
| Qwen-1.8B-Chat | 1.8B | 4.95 |
| dolphin-2.6-phi-2 | 2.7B | 4.93 |
| phi-2 | 2.7B | 4.29 |
| TinyLlama-1.1B-Chat-v1.0| 1.1B | 3.46 |
### OpenLLM Leaderboard
| Model | Size | Average | ARC Challenge (acc_norm) | HellaSwag (acc_norm) | MMLU (acc_norm) | TruthfulQA (mc2) | Winogrande (acc) | Gsm8k (acc) |
|----------------------------------------|------|---------|-------------------------|----------------------|-----------------|------------------|------------------|-------------|
| microsoft/phi-2 | 2.7B | 61.32% | 61.09% | 75.11% | 58.11% | 44.47% | 74.35% | 54.81% |
| **stabilityai/stablelm-2-zephyr-1_6b** | 1.6B | 49.89% | 43.69% | 69.34% | 41.85% | 45.21% | 64.09% | 35.18% |
| microsoft/phi-1_5 | 1.3B | 47.69% | 52.90% | 63.79% | 43.89% | 40.89% | 72.22% | 12.43% |
| stabilityai/stablelm-2-1_6b | 1.6B | 45.54% | 43.43% | 70.49% | 38.93% | 36.65% | 65.90% | 17.82% |
| mosaicml/mpt-7b | 7B | 44.28% | 47.70% | 77.57% | 30.80% | 33.40% | 72.14% | 4.02% |
| KnutJaegersberg/Qwen-1_8B-Llamaified* | 1.8B | 44.75% | 37.71% | 58.87% | 46.37% | 39.41% | 61.72% | 24.41% |
| openlm-research/open_llama_3b_v2 | 3B | 40.28% | 40.27% | 71.60% | 27.12% | 34.78% | 67.01% | 0.91% |
| iiuae/falcon-rw-1b | 1B | 37.07% | 35.07% | 63.56% | 25.28% | 35.96% | 62.04% | 0.53% |
| TinyLlama/TinyLlama-1.1B-3T | 1.1B | 36.40% | 33.79% | 60.31% | 26.04% | 37.32% | 59.51% | 1.44% |
### Training Infrastructure
* **Hardware**: `StableLM 2 Zephyr 1.6B` was trained on the Stability AI cluster across 8 nodes with 8 A100 80GBs GPUs for each nodes.
* **Code Base**: We use our internal script for SFT steps and used [HuggingFace Alignment Handbook script](https://github.com/huggingface/alignment-handbook) for DPO training.
## Use and Limitations
### Intended Use
The model is intended to be used in chat-like applications. Developers must evaluate the model for safety performance in their specific use case. Read more about [safety and limitations](#limitations-and-bias) below.
### Limitations and Bias
This model is not trained against adversarial inputs. We strongly recommend pairing this model with an input and output classifier to prevent harmful responses.
Through our internal red teaming, we discovered that while the model will not output harmful information if not prompted to do so, it will hallucinate many facts. It is also willing to output potentially harmful outputs or misinformation when the user requests it.
Using this model will require guardrails around your inputs and outputs to ensure that any outputs returned are not misinformation or harmful.
Additionally, as each use case is unique, we recommend running your own suite of tests to ensure proper performance of this model.
Finally, do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others.
## How to Cite
```bibtex
@misc{StableLM-2-1.6B,
url={[https://huggingface.co/stabilityai/stablelm-2-1.6b](https://huggingface.co/stabilityai/stablelm-2-1.6b)},
title={Stable LM 2 1.6B},
author={Stability AI Language Team}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_stabilityai__stablelm-2-zephyr-1_6b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |49.99|
|AI2 Reasoning Challenge (25-Shot)|43.69|
|HellaSwag (10-Shot) |69.30|
|MMLU (5-Shot) |42.03|
|TruthfulQA (0-shot) |45.11|
|Winogrande (5-shot) |64.48|
|GSM8k (5-shot) |35.33|
|