File size: 9,158 Bytes
78721b2
 
a9acc67
e1f00dc
 
 
78721b2
 
a9acc67
 
 
 
a66e71b
a9acc67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db32f8b
 
a9acc67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
---
library_name: transformers
license: apache-2.0
base_model:
- usyd-community/vitpose-base-simple
pipeline_tag: keypoint-detection
---

# SynthPose (Transformers 🤗 VitPose Base variant)

The SynthPose model was proposed in [OpenCapBench: A Benchmark to Bridge Pose Estimation and Biomechanics](https://arxiv.org/abs/2406.09788) by Yoni Gozlan, Antoine Falisse, Scott Uhlrich, Anthony Gatti, Michael Black, Akshay Chaudhari. 

This model was contributed by [Yoni Gozlan](https://huggingface.co/yonigozlan)
# Intended use cases

This model uses a VitPose Base backbone.
SynthPose is a new approach that enables finetuning of pre-trained 2D human pose models to predict an arbitrarily denser set of keypoints for accurate kinematic analysis through the use of synthetic data.  
More details are available in [OpenCapBench: A Benchmark to Bridge Pose Estimation and Biomechanics](https://arxiv.org/abs/2406.09788).  
This particular variant was finetuned on a set of keypoints usually found on motion capture setups, and include coco keypoints as well.

The model predicts the following 52 markers:

```py
{
    0: "Nose",
    1: "L_Eye",
    2: "R_Eye",
    3: "L_Ear",
    4: "R_Ear",
    5: "L_Shoulder",
    6: "R_Shoulder",
    7: "L_Elbow",
    8: "R_Elbow",
    9: "L_Wrist",
    10: "R_Wrist",
    11: "L_Hip",
    12: "R_Hip",
    13: "L_Knee",
    14: "R_Knee",
    15: "L_Ankle",
    16: "R_Ankle",
    17: "sternum",
    18: "rshoulder",
    19: "lshoulder",
    20: "r_lelbow",
    21: "l_lelbow",
    22: "r_melbow",
    23: "l_melbow",
    24: "r_lwrist",
    25: "l_lwrist",
    26: "r_mwrist",
    27: "l_mwrist",
    28: "r_ASIS",
    29: "l_ASIS",
    30: "r_PSIS",
    31: "l_PSIS",
    32: "r_knee",
    33: "l_knee",
    34: "r_mknee",
    35: "l_mknee",
    36: "r_ankle",
    37: "l_ankle",
    38: "r_mankle",
    39: "l_mankle",
    40: "r_5meta",
    41: "l_5meta",
    42: "r_toe",
    43: "l_toe",
    44: "r_big_toe",
    45: "l_big_toe",
    46: "l_calc",
    47: "r_calc",
    48: "C7",
    49: "L2",
    50: "T11",
    51: "T6",
}
```
Where the first 17 keypoints are the COCO keypoints, and the next 35 are anatomical markers.

# Usage

## Image inference

Here's how to load the model and run inference on an image:

```py
import torch
import requests
import numpy as np

from PIL import Image

from transformers import (
    AutoProcessor,
    RTDetrForObjectDetection,
    VitPoseForPoseEstimation,
)

device = "cuda" if torch.cuda.is_available() else "cpu"

url = "http://farm4.staticflickr.com/3300/3416216247_f9c6dfc939_z.jpg"
image = Image.open(requests.get(url, stream=True).raw)

# ------------------------------------------------------------------------
# Stage 1. Detect humans on the image
# ------------------------------------------------------------------------

# You can choose detector by your choice
person_image_processor = AutoProcessor.from_pretrained("PekingU/rtdetr_r50vd_coco_o365")
person_model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd_coco_o365", device_map=device)

inputs = person_image_processor(images=image, return_tensors="pt").to(device)

with torch.no_grad():
    outputs = person_model(**inputs)

results = person_image_processor.post_process_object_detection(
    outputs, target_sizes=torch.tensor([(image.height, image.width)]), threshold=0.3
)
result = results[0]  # take first image results

# Human label refers 0 index in COCO dataset
person_boxes = result["boxes"][result["labels"] == 0]
person_boxes = person_boxes.cpu().numpy()

# Convert boxes from VOC (x1, y1, x2, y2) to COCO (x1, y1, w, h) format
person_boxes[:, 2] = person_boxes[:, 2] - person_boxes[:, 0]
person_boxes[:, 3] = person_boxes[:, 3] - person_boxes[:, 1]

# ------------------------------------------------------------------------
# Stage 2. Detect keypoints for each person found
# ------------------------------------------------------------------------

image_processor = AutoProcessor.from_pretrained("yonigozlan/synthpose-vitpose-base-hf")
model = VitPoseForPoseEstimation.from_pretrained("yonigozlan/synthpose-vitpose-base-hf", device_map=device)

inputs = image_processor(image, boxes=[person_boxes], return_tensors="pt").to(device)

with torch.no_grad():
    outputs = model(**inputs)

pose_results = image_processor.post_process_pose_estimation(outputs, boxes=[person_boxes])
image_pose_result = pose_results[0]  # results for first image
```

### Visualization for supervision user

```py
import supervision as sv

xy = torch.stack([pose_result['keypoints'] for pose_result in image_pose_result]).cpu().numpy()
scores = torch.stack([pose_result['scores'] for pose_result in image_pose_result]).cpu().numpy()

key_points = sv.KeyPoints(
    xy=xy, confidence=scores
)

vertex_annotator = sv.VertexAnnotator(
    color=sv.Color.PINK,
    radius=2
)

annotated_frame = vertex_annotator.annotate(
    scene=image.copy(),
    key_points=key_points
)
annotated_frame
```

<p>
<img src="vitpose_sv.png" width=375>
</p>

### Advanced manual visualization
```py
import math
import cv2

def draw_points(image, keypoints, scores, pose_keypoint_color, keypoint_score_threshold, radius, show_keypoint_weight):
    if pose_keypoint_color is not None:
        assert len(pose_keypoint_color) == len(keypoints)
    for kid, (kpt, kpt_score) in enumerate(zip(keypoints, scores)):
        x_coord, y_coord = int(kpt[0]), int(kpt[1])
        if kpt_score > keypoint_score_threshold:
            color = tuple(int(c) for c in pose_keypoint_color[kid])
            if show_keypoint_weight:
                cv2.circle(image, (int(x_coord), int(y_coord)), radius, color, -1)
                transparency = max(0, min(1, kpt_score))
                cv2.addWeighted(image, transparency, image, 1 - transparency, 0, dst=image)
            else:
                cv2.circle(image, (int(x_coord), int(y_coord)), radius, color, -1)

def draw_links(image, keypoints, scores, keypoint_edges, link_colors, keypoint_score_threshold, thickness, show_keypoint_weight, stick_width = 2):
    height, width, _ = image.shape
    if keypoint_edges is not None and link_colors is not None:
        assert len(link_colors) == len(keypoint_edges)
        for sk_id, sk in enumerate(keypoint_edges):
            x1, y1, score1 = (int(keypoints[sk[0], 0]), int(keypoints[sk[0], 1]), scores[sk[0]])
            x2, y2, score2 = (int(keypoints[sk[1], 0]), int(keypoints[sk[1], 1]), scores[sk[1]])
            if (
                x1 > 0
                and x1 < width
                and y1 > 0
                and y1 < height
                and x2 > 0
                and x2 < width
                and y2 > 0
                and y2 < height
                and score1 > keypoint_score_threshold
                and score2 > keypoint_score_threshold
            ):
                color = tuple(int(c) for c in link_colors[sk_id])
                if show_keypoint_weight:
                    X = (x1, x2)
                    Y = (y1, y2)
                    mean_x = np.mean(X)
                    mean_y = np.mean(Y)
                    length = ((Y[0] - Y[1]) ** 2 + (X[0] - X[1]) ** 2) ** 0.5
                    angle = math.degrees(math.atan2(Y[0] - Y[1], X[0] - X[1]))
                    polygon = cv2.ellipse2Poly(
                        (int(mean_x), int(mean_y)), (int(length / 2), int(stick_width)), int(angle), 0, 360, 1
                    )
                    cv2.fillConvexPoly(image, polygon, color)
                    transparency = max(0, min(1, 0.5 * (keypoints[sk[0], 2] + keypoints[sk[1], 2])))
                    cv2.addWeighted(image, transparency, image, 1 - transparency, 0, dst=image)
                else:
                    cv2.line(image, (x1, y1), (x2, y2), color, thickness=thickness)


# Note: keypoint_edges and color palette are dataset-specific
keypoint_edges = model.config.edges

palette = np.array(
    [
        [255, 128, 0],
        [255, 153, 51],
        [255, 178, 102],
        [230, 230, 0],
        [255, 153, 255],
        [153, 204, 255],
        [255, 102, 255],
        [255, 51, 255],
        [102, 178, 255],
        [51, 153, 255],
        [255, 153, 153],
        [255, 102, 102],
        [255, 51, 51],
        [153, 255, 153],
        [102, 255, 102],
        [51, 255, 51],
        [0, 255, 0],
        [0, 0, 255],
        [255, 0, 0],
        [255, 255, 255],
    ]
)

link_colors = palette[[0, 0, 0, 0, 7, 7, 7, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16]]
keypoint_colors = palette[[16, 16, 16, 16, 16, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0]+[4]*(52-17)]

numpy_image = np.array(image)

for pose_result in image_pose_result:
    scores = np.array(pose_result["scores"])
    keypoints = np.array(pose_result["keypoints"])

    # draw each point on image
    draw_points(numpy_image, keypoints, scores, keypoint_colors, keypoint_score_threshold=0.3, radius=2, show_keypoint_weight=False)

    # draw links
    draw_links(numpy_image, keypoints, scores, keypoint_edges, link_colors, keypoint_score_threshold=0.3, thickness=1, show_keypoint_weight=False)

pose_image = Image.fromarray(numpy_image)
pose_image
```
<p>
<img src="vitpose_manual.png" width=375>
</p>