File size: 9,158 Bytes
78721b2 a9acc67 e1f00dc 78721b2 a9acc67 a66e71b a9acc67 db32f8b a9acc67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
---
library_name: transformers
license: apache-2.0
base_model:
- usyd-community/vitpose-base-simple
pipeline_tag: keypoint-detection
---
# SynthPose (Transformers 🤗 VitPose Base variant)
The SynthPose model was proposed in [OpenCapBench: A Benchmark to Bridge Pose Estimation and Biomechanics](https://arxiv.org/abs/2406.09788) by Yoni Gozlan, Antoine Falisse, Scott Uhlrich, Anthony Gatti, Michael Black, Akshay Chaudhari.
This model was contributed by [Yoni Gozlan](https://huggingface.co/yonigozlan)
# Intended use cases
This model uses a VitPose Base backbone.
SynthPose is a new approach that enables finetuning of pre-trained 2D human pose models to predict an arbitrarily denser set of keypoints for accurate kinematic analysis through the use of synthetic data.
More details are available in [OpenCapBench: A Benchmark to Bridge Pose Estimation and Biomechanics](https://arxiv.org/abs/2406.09788).
This particular variant was finetuned on a set of keypoints usually found on motion capture setups, and include coco keypoints as well.
The model predicts the following 52 markers:
```py
{
0: "Nose",
1: "L_Eye",
2: "R_Eye",
3: "L_Ear",
4: "R_Ear",
5: "L_Shoulder",
6: "R_Shoulder",
7: "L_Elbow",
8: "R_Elbow",
9: "L_Wrist",
10: "R_Wrist",
11: "L_Hip",
12: "R_Hip",
13: "L_Knee",
14: "R_Knee",
15: "L_Ankle",
16: "R_Ankle",
17: "sternum",
18: "rshoulder",
19: "lshoulder",
20: "r_lelbow",
21: "l_lelbow",
22: "r_melbow",
23: "l_melbow",
24: "r_lwrist",
25: "l_lwrist",
26: "r_mwrist",
27: "l_mwrist",
28: "r_ASIS",
29: "l_ASIS",
30: "r_PSIS",
31: "l_PSIS",
32: "r_knee",
33: "l_knee",
34: "r_mknee",
35: "l_mknee",
36: "r_ankle",
37: "l_ankle",
38: "r_mankle",
39: "l_mankle",
40: "r_5meta",
41: "l_5meta",
42: "r_toe",
43: "l_toe",
44: "r_big_toe",
45: "l_big_toe",
46: "l_calc",
47: "r_calc",
48: "C7",
49: "L2",
50: "T11",
51: "T6",
}
```
Where the first 17 keypoints are the COCO keypoints, and the next 35 are anatomical markers.
# Usage
## Image inference
Here's how to load the model and run inference on an image:
```py
import torch
import requests
import numpy as np
from PIL import Image
from transformers import (
AutoProcessor,
RTDetrForObjectDetection,
VitPoseForPoseEstimation,
)
device = "cuda" if torch.cuda.is_available() else "cpu"
url = "http://farm4.staticflickr.com/3300/3416216247_f9c6dfc939_z.jpg"
image = Image.open(requests.get(url, stream=True).raw)
# ------------------------------------------------------------------------
# Stage 1. Detect humans on the image
# ------------------------------------------------------------------------
# You can choose detector by your choice
person_image_processor = AutoProcessor.from_pretrained("PekingU/rtdetr_r50vd_coco_o365")
person_model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd_coco_o365", device_map=device)
inputs = person_image_processor(images=image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = person_model(**inputs)
results = person_image_processor.post_process_object_detection(
outputs, target_sizes=torch.tensor([(image.height, image.width)]), threshold=0.3
)
result = results[0] # take first image results
# Human label refers 0 index in COCO dataset
person_boxes = result["boxes"][result["labels"] == 0]
person_boxes = person_boxes.cpu().numpy()
# Convert boxes from VOC (x1, y1, x2, y2) to COCO (x1, y1, w, h) format
person_boxes[:, 2] = person_boxes[:, 2] - person_boxes[:, 0]
person_boxes[:, 3] = person_boxes[:, 3] - person_boxes[:, 1]
# ------------------------------------------------------------------------
# Stage 2. Detect keypoints for each person found
# ------------------------------------------------------------------------
image_processor = AutoProcessor.from_pretrained("yonigozlan/synthpose-vitpose-base-hf")
model = VitPoseForPoseEstimation.from_pretrained("yonigozlan/synthpose-vitpose-base-hf", device_map=device)
inputs = image_processor(image, boxes=[person_boxes], return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
pose_results = image_processor.post_process_pose_estimation(outputs, boxes=[person_boxes])
image_pose_result = pose_results[0] # results for first image
```
### Visualization for supervision user
```py
import supervision as sv
xy = torch.stack([pose_result['keypoints'] for pose_result in image_pose_result]).cpu().numpy()
scores = torch.stack([pose_result['scores'] for pose_result in image_pose_result]).cpu().numpy()
key_points = sv.KeyPoints(
xy=xy, confidence=scores
)
vertex_annotator = sv.VertexAnnotator(
color=sv.Color.PINK,
radius=2
)
annotated_frame = vertex_annotator.annotate(
scene=image.copy(),
key_points=key_points
)
annotated_frame
```
<p>
<img src="vitpose_sv.png" width=375>
</p>
### Advanced manual visualization
```py
import math
import cv2
def draw_points(image, keypoints, scores, pose_keypoint_color, keypoint_score_threshold, radius, show_keypoint_weight):
if pose_keypoint_color is not None:
assert len(pose_keypoint_color) == len(keypoints)
for kid, (kpt, kpt_score) in enumerate(zip(keypoints, scores)):
x_coord, y_coord = int(kpt[0]), int(kpt[1])
if kpt_score > keypoint_score_threshold:
color = tuple(int(c) for c in pose_keypoint_color[kid])
if show_keypoint_weight:
cv2.circle(image, (int(x_coord), int(y_coord)), radius, color, -1)
transparency = max(0, min(1, kpt_score))
cv2.addWeighted(image, transparency, image, 1 - transparency, 0, dst=image)
else:
cv2.circle(image, (int(x_coord), int(y_coord)), radius, color, -1)
def draw_links(image, keypoints, scores, keypoint_edges, link_colors, keypoint_score_threshold, thickness, show_keypoint_weight, stick_width = 2):
height, width, _ = image.shape
if keypoint_edges is not None and link_colors is not None:
assert len(link_colors) == len(keypoint_edges)
for sk_id, sk in enumerate(keypoint_edges):
x1, y1, score1 = (int(keypoints[sk[0], 0]), int(keypoints[sk[0], 1]), scores[sk[0]])
x2, y2, score2 = (int(keypoints[sk[1], 0]), int(keypoints[sk[1], 1]), scores[sk[1]])
if (
x1 > 0
and x1 < width
and y1 > 0
and y1 < height
and x2 > 0
and x2 < width
and y2 > 0
and y2 < height
and score1 > keypoint_score_threshold
and score2 > keypoint_score_threshold
):
color = tuple(int(c) for c in link_colors[sk_id])
if show_keypoint_weight:
X = (x1, x2)
Y = (y1, y2)
mean_x = np.mean(X)
mean_y = np.mean(Y)
length = ((Y[0] - Y[1]) ** 2 + (X[0] - X[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(Y[0] - Y[1], X[0] - X[1]))
polygon = cv2.ellipse2Poly(
(int(mean_x), int(mean_y)), (int(length / 2), int(stick_width)), int(angle), 0, 360, 1
)
cv2.fillConvexPoly(image, polygon, color)
transparency = max(0, min(1, 0.5 * (keypoints[sk[0], 2] + keypoints[sk[1], 2])))
cv2.addWeighted(image, transparency, image, 1 - transparency, 0, dst=image)
else:
cv2.line(image, (x1, y1), (x2, y2), color, thickness=thickness)
# Note: keypoint_edges and color palette are dataset-specific
keypoint_edges = model.config.edges
palette = np.array(
[
[255, 128, 0],
[255, 153, 51],
[255, 178, 102],
[230, 230, 0],
[255, 153, 255],
[153, 204, 255],
[255, 102, 255],
[255, 51, 255],
[102, 178, 255],
[51, 153, 255],
[255, 153, 153],
[255, 102, 102],
[255, 51, 51],
[153, 255, 153],
[102, 255, 102],
[51, 255, 51],
[0, 255, 0],
[0, 0, 255],
[255, 0, 0],
[255, 255, 255],
]
)
link_colors = palette[[0, 0, 0, 0, 7, 7, 7, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16]]
keypoint_colors = palette[[16, 16, 16, 16, 16, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0]+[4]*(52-17)]
numpy_image = np.array(image)
for pose_result in image_pose_result:
scores = np.array(pose_result["scores"])
keypoints = np.array(pose_result["keypoints"])
# draw each point on image
draw_points(numpy_image, keypoints, scores, keypoint_colors, keypoint_score_threshold=0.3, radius=2, show_keypoint_weight=False)
# draw links
draw_links(numpy_image, keypoints, scores, keypoint_edges, link_colors, keypoint_score_threshold=0.3, thickness=1, show_keypoint_weight=False)
pose_image = Image.fromarray(numpy_image)
pose_image
```
<p>
<img src="vitpose_manual.png" width=375>
</p> |