Upload modeling_mrt5.py with huggingface_hub
Browse files- modeling_mrt5.py +1352 -0
modeling_mrt5.py
ADDED
@@ -0,0 +1,1352 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modeling_mrt5.py
|
2 |
+
# Author: Julie Kallini
|
3 |
+
# Description: This file contains the implementation of the MrT5 model.
|
4 |
+
# The code is adapted from HuggingFace's modeling_t5.py. New code sequences
|
5 |
+
# are labeled with comments.
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import copy
|
9 |
+
import numpy as np
|
10 |
+
from torch import nn
|
11 |
+
from models.modeling_t5 import (
|
12 |
+
T5Attention,
|
13 |
+
T5LayerNorm,
|
14 |
+
T5LayerFF,
|
15 |
+
T5Stack,
|
16 |
+
T5ForConditionalGeneration,
|
17 |
+
softmax1,
|
18 |
+
)
|
19 |
+
from configuration_mrt5 import MrT5Config
|
20 |
+
from transformers.modeling_outputs import (
|
21 |
+
BaseModelOutput,
|
22 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
23 |
+
Seq2SeqLMOutput,
|
24 |
+
)
|
25 |
+
from transformers.utils import logging
|
26 |
+
from typing import Optional, Tuple, Union
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__)
|
30 |
+
|
31 |
+
@dataclass
|
32 |
+
class MrT5BaseModelOutputWithPastAndCrossAttentions(BaseModelOutputWithPastAndCrossAttentions):
|
33 |
+
delete_gate_mask: torch.FloatTensor = None
|
34 |
+
delete_gate_output: torch.FloatTensor = None
|
35 |
+
delete_gate_logits: torch.FloatTensor = None
|
36 |
+
attention_mask: torch.FloatTensor = None
|
37 |
+
attention_queries: torch.FloatTensor = None
|
38 |
+
attention_keys: torch.FloatTensor = None
|
39 |
+
attention_values: torch.FloatTensor = None
|
40 |
+
attention_scores: torch.FloatTensor = None
|
41 |
+
cross_attention_keys: torch.FloatTensor = None
|
42 |
+
cross_attention_queries: torch.FloatTensor = None
|
43 |
+
cross_attention_values: torch.FloatTensor = None
|
44 |
+
cross_attention_scores: torch.FloatTensor = None
|
45 |
+
|
46 |
+
|
47 |
+
@dataclass
|
48 |
+
class MrT5Seq2SeqLMOutput(Seq2SeqLMOutput):
|
49 |
+
delete_gate_mask: torch.FloatTensor = None
|
50 |
+
delete_gate_output: torch.FloatTensor = None
|
51 |
+
delete_gate_logits: torch.FloatTensor = None
|
52 |
+
encoder_keys: torch.FloatTensor = None
|
53 |
+
encoder_queries: torch.FloatTensor = None
|
54 |
+
encoder_values: torch.FloatTensor = None
|
55 |
+
encoder_scores: torch.FloatTensor = None
|
56 |
+
decoder_keys: torch.FloatTensor = None
|
57 |
+
decoder_queries: torch.FloatTensor = None
|
58 |
+
decoder_values: torch.FloatTensor = None
|
59 |
+
decoder_scores: torch.FloatTensor = None
|
60 |
+
cross_attention_keys: torch.FloatTensor = None
|
61 |
+
cross_attention_queries: torch.FloatTensor = None
|
62 |
+
cross_attention_values: torch.FloatTensor = None
|
63 |
+
cross_attention_scores: torch.FloatTensor = None
|
64 |
+
|
65 |
+
|
66 |
+
TORCH_INIT_FUNCTIONS = {
|
67 |
+
"uniform_": nn.init.uniform_,
|
68 |
+
"normal_": nn.init.normal_,
|
69 |
+
"trunc_normal_": nn.init.trunc_normal_,
|
70 |
+
"constant_": nn.init.constant_,
|
71 |
+
"xavier_uniform_": nn.init.xavier_uniform_,
|
72 |
+
"xavier_normal_": nn.init.xavier_normal_,
|
73 |
+
"kaiming_uniform_": nn.init.kaiming_uniform_,
|
74 |
+
"kaiming_normal_": nn.init.kaiming_normal_,
|
75 |
+
"uniform": nn.init.uniform,
|
76 |
+
"normal": nn.init.normal,
|
77 |
+
"xavier_uniform": nn.init.xavier_uniform,
|
78 |
+
"xavier_normal": nn.init.xavier_normal,
|
79 |
+
"kaiming_uniform": nn.init.kaiming_uniform,
|
80 |
+
"kaiming_normal": nn.init.kaiming_normal,
|
81 |
+
}
|
82 |
+
|
83 |
+
class ScaledSigmoid(nn.Module):
|
84 |
+
def __init__(self, sigmoid_mask_scale):
|
85 |
+
super().__init__()
|
86 |
+
self.sigmoid_mask_scale = sigmoid_mask_scale
|
87 |
+
|
88 |
+
def forward(self, input):
|
89 |
+
return self.sigmoid_mask_scale * torch.sigmoid(-input)
|
90 |
+
|
91 |
+
def gumbel_noise_like(x: torch.Tensor) -> torch.Tensor:
|
92 |
+
eps = 3e-4 if x.dtype == torch.float16 else 1e-10
|
93 |
+
uniform = torch.empty_like(x).uniform_(eps, 1 - eps)
|
94 |
+
return - (- uniform.log()).log()
|
95 |
+
|
96 |
+
class SigmoidDeleteGate(nn.Module):
|
97 |
+
def __init__(self, config):
|
98 |
+
super().__init__()
|
99 |
+
self.has_layer_norm = config.gate_layer_norm
|
100 |
+
if self.has_layer_norm:
|
101 |
+
self.layer_norm = T5LayerNorm(config.hidden_size)
|
102 |
+
self.feed_forward = nn.Linear(config.hidden_size, 1)
|
103 |
+
self._init_weights(self.feed_forward)
|
104 |
+
self.activation = ScaledSigmoid(config.sigmoid_mask_scale)
|
105 |
+
self.use_gumbel_noise = config.use_gumbel_noise
|
106 |
+
|
107 |
+
def forward(self, hidden_states, input_ids):
|
108 |
+
if self.has_layer_norm:
|
109 |
+
hidden_states = self.layer_norm(hidden_states)
|
110 |
+
delete_gate_logits = self.feed_forward(hidden_states)
|
111 |
+
|
112 |
+
# Add gumbel noise to the delete gate logits
|
113 |
+
if self.training and self.use_gumbel_noise:
|
114 |
+
gumbel_noise = gumbel_noise_like(delete_gate_logits)
|
115 |
+
delete_gate_logits += gumbel_noise
|
116 |
+
|
117 |
+
gate_values = self.activation(delete_gate_logits)
|
118 |
+
|
119 |
+
# Check if there are any pad tokens in input_ids
|
120 |
+
if (input_ids == 0).any():
|
121 |
+
# Set gate values for pad tokens (input_ids == 0) to sigmoid_mask_scale
|
122 |
+
pad_mask = (input_ids == 0).unsqueeze(-1)
|
123 |
+
gate_values = torch.where(pad_mask, torch.tensor(self.activation.sigmoid_mask_scale), gate_values)
|
124 |
+
|
125 |
+
return gate_values, delete_gate_logits
|
126 |
+
|
127 |
+
def _init_weights(self, m, init_func="xavier_uniform_"):
|
128 |
+
# Initialize the weights. This is necessary because
|
129 |
+
# HuggingFace disables initialization during "from_pretrained"
|
130 |
+
if isinstance(m, nn.Linear):
|
131 |
+
TORCH_INIT_FUNCTIONS[init_func](m.weight)
|
132 |
+
m.bias.data.fill_(1)
|
133 |
+
|
134 |
+
|
135 |
+
class LogSigmoidDeleteGate(SigmoidDeleteGate):
|
136 |
+
def __init__(self, config):
|
137 |
+
super().__init__(config)
|
138 |
+
self.activation = nn.LogSigmoid()
|
139 |
+
|
140 |
+
class RandomDeleteGate(nn.Module):
|
141 |
+
def __init__(self, config):
|
142 |
+
super().__init__()
|
143 |
+
# Store the sigmoid_mask_scale and the probability of activation
|
144 |
+
self.sigmoid_mask_scale = config.sigmoid_mask_scale
|
145 |
+
self.random_deletion_probability = config.random_deletion_probability
|
146 |
+
|
147 |
+
def __random_mask_tensor(self, x, n):
|
148 |
+
# Determine the shape for the output tensor
|
149 |
+
target_shape = (x.shape[0], x.shape[1], 1)
|
150 |
+
total_elements = x.shape[0] * x.shape[1]
|
151 |
+
|
152 |
+
# Create a flattened float tensor of all 0.0
|
153 |
+
flat_tensor = torch.zeros(total_elements, dtype=torch.float32, device=x.device)
|
154 |
+
|
155 |
+
# Randomly select n indices to be set to 1.0
|
156 |
+
indices = torch.randperm(total_elements)[:n]
|
157 |
+
flat_tensor[indices] = 1.0
|
158 |
+
|
159 |
+
# Reshape it to match the desired target shape
|
160 |
+
float_tensor = flat_tensor.view(target_shape)
|
161 |
+
|
162 |
+
return float_tensor
|
163 |
+
|
164 |
+
def forward(self, hidden_states, input_ids):
|
165 |
+
# Calculate the number of tokens to delete using a gaussian
|
166 |
+
deletion_percentage = np.random.normal(loc=self.random_deletion_probability, scale=0.05)
|
167 |
+
n_deletions = int(deletion_percentage * hidden_states.shape[0] * hidden_states.shape[1])
|
168 |
+
|
169 |
+
# Create a random mask with n_deletions True values
|
170 |
+
random_mask = self.__random_mask_tensor(hidden_states, n_deletions)
|
171 |
+
|
172 |
+
# Scale the mask by sigmoid_mask_scale
|
173 |
+
delete_gate_mask = random_mask * self.sigmoid_mask_scale
|
174 |
+
return delete_gate_mask, delete_gate_mask
|
175 |
+
|
176 |
+
|
177 |
+
class FixedDeleteGate(nn.Module):
|
178 |
+
def __init__(self, config):
|
179 |
+
super().__init__()
|
180 |
+
self.sigmoid_mask_scale = config.sigmoid_mask_scale
|
181 |
+
self.fixed_deletion_amount = config.fixed_deletion_amount
|
182 |
+
self.sep_tokens = torch.tensor([12, 13, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
|
183 |
+
46, 47, 48, 49, 50, 61, 62, 63, 64, 65, 66, 67, 94,
|
184 |
+
95, 96, 97, 98, 99, 126, 127, 128, 129, 1])
|
185 |
+
|
186 |
+
def __create_mask(self, input_ids):
|
187 |
+
device = input_ids.device
|
188 |
+
batch_size, seq_len = input_ids.size()
|
189 |
+
self.sep_tokens = self.sep_tokens.to(device)
|
190 |
+
|
191 |
+
# Create an initial mask filled with sigmoid_mask_scale
|
192 |
+
mask = torch.full((batch_size, seq_len), self.sigmoid_mask_scale, device=device)
|
193 |
+
|
194 |
+
# Find sep_token indices
|
195 |
+
is_sep = torch.isin(input_ids, self.sep_tokens)
|
196 |
+
|
197 |
+
# Create a tensor of segment lengths
|
198 |
+
sep_positions = torch.cumsum(is_sep, dim=1)
|
199 |
+
segment_lengths = torch.zeros_like(input_ids, dtype=torch.float)
|
200 |
+
segment_lengths[:, 1:] = (sep_positions[:, 1:] != sep_positions[:, :-1]).float()
|
201 |
+
segment_lengths[:, 0] = 1.0
|
202 |
+
segment_lengths = torch.cumsum(segment_lengths, dim=1)
|
203 |
+
|
204 |
+
# Calculate number of zeros for each segment
|
205 |
+
segment_counts = torch.bincount(sep_positions.view(-1), minlength=seq_len)
|
206 |
+
segment_starts = torch.cumsum(torch.cat([torch.tensor([0], device=device), segment_counts[:-1]]), dim=0)
|
207 |
+
segment_ends = torch.cumsum(segment_counts, dim=0)
|
208 |
+
num_zeros = torch.ceil((1 - self.fixed_deletion_amount) * (segment_ends - segment_starts)).long()
|
209 |
+
|
210 |
+
# Create the mask based on the calculated number of zeros
|
211 |
+
for i in range(batch_size):
|
212 |
+
for start, count in zip(segment_starts, num_zeros):
|
213 |
+
mask[i, start:start + count] = 0
|
214 |
+
|
215 |
+
return mask.to(torch.float)
|
216 |
+
|
217 |
+
def forward(self, hidden_states, input_ids):
|
218 |
+
delete_gate_mask = self.__create_mask(input_ids).unsqueeze(-1)
|
219 |
+
return delete_gate_mask, delete_gate_mask
|
220 |
+
|
221 |
+
|
222 |
+
class MrT5Attention(T5Attention):
|
223 |
+
"""
|
224 |
+
Extends the T5Attention class to include a delete gate. Only the forward
|
225 |
+
method is modified. The delete_gate_mask passed to the forward function
|
226 |
+
is applied to the attention scores.
|
227 |
+
"""
|
228 |
+
|
229 |
+
def __init__(self, config: MrT5Config, has_relative_attention_bias=False):
|
230 |
+
super().__init__(config, has_relative_attention_bias)
|
231 |
+
#### NEW CODE ####
|
232 |
+
self.use_softmax1 = config.use_softmax1
|
233 |
+
#### NEW CODE ####
|
234 |
+
|
235 |
+
def forward(
|
236 |
+
self,
|
237 |
+
hidden_states,
|
238 |
+
mask=None,
|
239 |
+
key_value_states=None,
|
240 |
+
position_bias=None,
|
241 |
+
past_key_value=None,
|
242 |
+
layer_head_mask=None,
|
243 |
+
query_length=None,
|
244 |
+
use_cache=False,
|
245 |
+
output_attentions=False,
|
246 |
+
#### NEW CODE ####
|
247 |
+
delete_gate_mask=None,
|
248 |
+
#### NEW CODE ####
|
249 |
+
):
|
250 |
+
"""
|
251 |
+
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
|
252 |
+
"""
|
253 |
+
# Input is (batch_size, seq_length, dim)
|
254 |
+
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
|
255 |
+
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
|
256 |
+
batch_size, seq_length = hidden_states.shape[:2]
|
257 |
+
|
258 |
+
real_seq_length = seq_length
|
259 |
+
|
260 |
+
if past_key_value is not None:
|
261 |
+
if len(past_key_value) != 2:
|
262 |
+
raise ValueError(
|
263 |
+
f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
|
264 |
+
)
|
265 |
+
real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length
|
266 |
+
|
267 |
+
key_length = real_seq_length if key_value_states is None else key_value_states.shape[
|
268 |
+
1]
|
269 |
+
|
270 |
+
def shape(states):
|
271 |
+
"""projection"""
|
272 |
+
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
|
273 |
+
|
274 |
+
def unshape(states):
|
275 |
+
"""reshape"""
|
276 |
+
return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
|
277 |
+
|
278 |
+
def project(hidden_states, proj_layer, key_value_states, past_key_value):
|
279 |
+
"""projects hidden states correctly to key/query states"""
|
280 |
+
if key_value_states is None:
|
281 |
+
# self-attn
|
282 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
283 |
+
hidden_states = shape(proj_layer(hidden_states))
|
284 |
+
elif past_key_value is None:
|
285 |
+
# cross-attn
|
286 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
287 |
+
hidden_states = shape(proj_layer(key_value_states))
|
288 |
+
|
289 |
+
if past_key_value is not None:
|
290 |
+
if key_value_states is None:
|
291 |
+
# self-attn
|
292 |
+
# (batch_size, n_heads, key_length, dim_per_head)
|
293 |
+
hidden_states = torch.cat(
|
294 |
+
[past_key_value, hidden_states], dim=2)
|
295 |
+
elif past_key_value.shape[2] != key_value_states.shape[1]:
|
296 |
+
# checking that the `sequence_length` of the `past_key_value` is the same as
|
297 |
+
# the provided `key_value_states` to support prefix tuning
|
298 |
+
# cross-attn
|
299 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
300 |
+
hidden_states = shape(proj_layer(key_value_states))
|
301 |
+
else:
|
302 |
+
# cross-attn
|
303 |
+
hidden_states = past_key_value
|
304 |
+
return hidden_states
|
305 |
+
|
306 |
+
# get query states
|
307 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
308 |
+
query_states = shape(self.q(hidden_states))
|
309 |
+
|
310 |
+
# get key/value states
|
311 |
+
key_states = project(
|
312 |
+
hidden_states, self.k, key_value_states, past_key_value[
|
313 |
+
0] if past_key_value is not None else None
|
314 |
+
)
|
315 |
+
value_states = project(
|
316 |
+
hidden_states, self.v, key_value_states, past_key_value[
|
317 |
+
1] if past_key_value is not None else None
|
318 |
+
)
|
319 |
+
|
320 |
+
# compute scores
|
321 |
+
scores = torch.matmul(
|
322 |
+
query_states, key_states.transpose(3, 2)
|
323 |
+
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
|
324 |
+
|
325 |
+
#### NEW CODE ####
|
326 |
+
if not self.has_absolute_position_embeddings:
|
327 |
+
#### NEW CODE ####
|
328 |
+
if position_bias is None:
|
329 |
+
if not self.has_relative_attention_bias:
|
330 |
+
position_bias = torch.zeros(
|
331 |
+
(1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype
|
332 |
+
)
|
333 |
+
if self.gradient_checkpointing and self.training:
|
334 |
+
position_bias.requires_grad = True
|
335 |
+
else:
|
336 |
+
position_bias = self.compute_bias(
|
337 |
+
real_seq_length, key_length, device=scores.device)
|
338 |
+
|
339 |
+
# if key and values are already calculated
|
340 |
+
# we want only the last query position bias
|
341 |
+
if past_key_value is not None:
|
342 |
+
position_bias = position_bias[:, :, -hidden_states.size(1):, :]
|
343 |
+
|
344 |
+
if mask is not None:
|
345 |
+
# (batch_size, n_heads, seq_length, key_length)
|
346 |
+
position_bias = position_bias + mask
|
347 |
+
|
348 |
+
if self.pruned_heads:
|
349 |
+
mask = torch.ones(position_bias.shape[1])
|
350 |
+
mask[list(self.pruned_heads)] = 0
|
351 |
+
position_bias_masked = position_bias[:, mask.bool()]
|
352 |
+
else:
|
353 |
+
position_bias_masked = position_bias
|
354 |
+
|
355 |
+
scores = scores + position_bias_masked
|
356 |
+
|
357 |
+
#### NEW CODE ####
|
358 |
+
# If there is no position bias, add attention mask to scores directly
|
359 |
+
elif mask is not None:
|
360 |
+
scores = scores + mask
|
361 |
+
|
362 |
+
#### NEW CODE ####
|
363 |
+
# Log scores to return for loss calculation
|
364 |
+
scores_to_return = scores
|
365 |
+
#### NEW CODE ####
|
366 |
+
|
367 |
+
# Apply the mask from the delete gate
|
368 |
+
if delete_gate_mask is not None:
|
369 |
+
scores = scores + delete_gate_mask.squeeze(-1).unsqueeze(-2).unsqueeze(-2)
|
370 |
+
|
371 |
+
if self.use_softmax1:
|
372 |
+
attn_weights = softmax1(scores.float(), dim=-1).type_as(
|
373 |
+
scores)
|
374 |
+
else:
|
375 |
+
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(
|
376 |
+
scores
|
377 |
+
) # (batch_size, n_heads, seq_length, key_length)
|
378 |
+
|
379 |
+
#### NEW CODE ####
|
380 |
+
|
381 |
+
attn_weights = nn.functional.dropout(
|
382 |
+
attn_weights, p=self.dropout, training=self.training
|
383 |
+
) # (batch_size, n_heads, seq_length, key_length)
|
384 |
+
|
385 |
+
# Mask heads if we want to
|
386 |
+
if layer_head_mask is not None:
|
387 |
+
attn_weights = attn_weights * layer_head_mask
|
388 |
+
|
389 |
+
# (batch_size, seq_length, dim)
|
390 |
+
attn_output = unshape(torch.matmul(attn_weights, value_states))
|
391 |
+
attn_output = self.o(attn_output)
|
392 |
+
|
393 |
+
present_key_value_state = (key_states, value_states) if (
|
394 |
+
self.is_decoder and use_cache) else None
|
395 |
+
outputs = (attn_output,) + \
|
396 |
+
(present_key_value_state,) + (position_bias,)
|
397 |
+
|
398 |
+
if output_attentions:
|
399 |
+
attentions_keys_queries = (attn_weights, key_states, query_states, value_states, scores_to_return)
|
400 |
+
outputs = outputs + (attentions_keys_queries,)
|
401 |
+
|
402 |
+
return outputs
|
403 |
+
|
404 |
+
|
405 |
+
class MrT5LayerSelfAttention(nn.Module):
|
406 |
+
"""
|
407 |
+
Modified version of T5LayerSelfAttention that uses MrT5Attention instead
|
408 |
+
of T5Attention.
|
409 |
+
"""
|
410 |
+
|
411 |
+
def __init__(self, config, has_relative_attention_bias=False):
|
412 |
+
super().__init__()
|
413 |
+
#### NEW CODE ####
|
414 |
+
# Use MrT5Attention instead of T5Attention
|
415 |
+
self.SelfAttention = MrT5Attention(
|
416 |
+
config, has_relative_attention_bias=has_relative_attention_bias)
|
417 |
+
#### NEW CODE ####
|
418 |
+
self.layer_norm = T5LayerNorm(
|
419 |
+
config.d_model, eps=config.layer_norm_epsilon)
|
420 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
421 |
+
|
422 |
+
def forward(
|
423 |
+
self,
|
424 |
+
hidden_states,
|
425 |
+
attention_mask=None,
|
426 |
+
position_bias=None,
|
427 |
+
layer_head_mask=None,
|
428 |
+
past_key_value=None,
|
429 |
+
use_cache=False,
|
430 |
+
output_attentions=False,
|
431 |
+
#### NEW CODE ####
|
432 |
+
delete_gate_mask=None,
|
433 |
+
#### NEW CODE ####
|
434 |
+
):
|
435 |
+
normed_hidden_states = self.layer_norm(hidden_states)
|
436 |
+
attention_output = self.SelfAttention(
|
437 |
+
normed_hidden_states,
|
438 |
+
mask=attention_mask,
|
439 |
+
position_bias=position_bias,
|
440 |
+
layer_head_mask=layer_head_mask,
|
441 |
+
past_key_value=past_key_value,
|
442 |
+
use_cache=use_cache,
|
443 |
+
output_attentions=output_attentions,
|
444 |
+
#### NEW CODE ####
|
445 |
+
delete_gate_mask=delete_gate_mask,
|
446 |
+
#### NEW CODE ####
|
447 |
+
)
|
448 |
+
hidden_states = hidden_states + self.dropout(attention_output[0])
|
449 |
+
# add attentions if we output them
|
450 |
+
outputs = (hidden_states,) + attention_output[1:]
|
451 |
+
return outputs
|
452 |
+
|
453 |
+
|
454 |
+
class MrT5LayerCrossAttention(nn.Module):
|
455 |
+
"""
|
456 |
+
Modified version of T5LayerCrossAttention that uses MrT5Attention instead
|
457 |
+
of T5Attention.
|
458 |
+
"""
|
459 |
+
|
460 |
+
def __init__(self, config):
|
461 |
+
super().__init__()
|
462 |
+
#### NEW CODE ####
|
463 |
+
# Use MrT5Attention instead of T5Attention
|
464 |
+
self.EncDecAttention = MrT5Attention(
|
465 |
+
config, has_relative_attention_bias=False)
|
466 |
+
#### NEW CODE ####
|
467 |
+
self.layer_norm = T5LayerNorm(
|
468 |
+
config.d_model, eps=config.layer_norm_epsilon)
|
469 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
470 |
+
|
471 |
+
def forward(
|
472 |
+
self,
|
473 |
+
hidden_states,
|
474 |
+
key_value_states,
|
475 |
+
attention_mask=None,
|
476 |
+
position_bias=None,
|
477 |
+
layer_head_mask=None,
|
478 |
+
past_key_value=None,
|
479 |
+
use_cache=False,
|
480 |
+
query_length=None,
|
481 |
+
output_attentions=False,
|
482 |
+
#### NEW CODE ####
|
483 |
+
delete_gate_mask=None,
|
484 |
+
#### NEW CODE ####
|
485 |
+
):
|
486 |
+
normed_hidden_states = self.layer_norm(hidden_states)
|
487 |
+
attention_output = self.EncDecAttention(
|
488 |
+
normed_hidden_states,
|
489 |
+
mask=attention_mask,
|
490 |
+
key_value_states=key_value_states,
|
491 |
+
position_bias=position_bias,
|
492 |
+
layer_head_mask=layer_head_mask,
|
493 |
+
past_key_value=past_key_value,
|
494 |
+
use_cache=use_cache,
|
495 |
+
query_length=query_length,
|
496 |
+
output_attentions=output_attentions,
|
497 |
+
#### NEW CODE ####
|
498 |
+
delete_gate_mask=delete_gate_mask,
|
499 |
+
#### NEW CODE ####
|
500 |
+
)
|
501 |
+
layer_output = hidden_states + self.dropout(attention_output[0])
|
502 |
+
# add attentions if we output them
|
503 |
+
outputs = (layer_output,) + attention_output[1:]
|
504 |
+
return outputs
|
505 |
+
|
506 |
+
|
507 |
+
class MrT5Block(nn.Module):
|
508 |
+
"""
|
509 |
+
Modified version of T5Block that uses MrT5LayerSelfAttention and
|
510 |
+
MrT5LayerCrossAttention instead of T5LayerSelfAttention and
|
511 |
+
T5LayerCrossAttention.
|
512 |
+
"""
|
513 |
+
|
514 |
+
def __init__(self, config, has_relative_attention_bias=False,
|
515 |
+
#### NEW CODE ####
|
516 |
+
has_delete_gate=False,
|
517 |
+
#### NEW CODE ####
|
518 |
+
):
|
519 |
+
super().__init__()
|
520 |
+
self.is_decoder = config.is_decoder
|
521 |
+
self.layer = nn.ModuleList()
|
522 |
+
#### NEW CODE ####
|
523 |
+
# Use MrT5LayerSelfAttention and MrT5LayerCrossAttention
|
524 |
+
# instead of T5LayerSelfAttention and T5LayerCrossAttention
|
525 |
+
self.layer.append(MrT5LayerSelfAttention(
|
526 |
+
config, has_relative_attention_bias=has_relative_attention_bias))
|
527 |
+
if self.is_decoder:
|
528 |
+
self.layer.append(MrT5LayerCrossAttention(config))
|
529 |
+
#### NEW CODE ####
|
530 |
+
|
531 |
+
self.layer.append(T5LayerFF(config))
|
532 |
+
|
533 |
+
#### NEW CODE ####
|
534 |
+
# Add delete gate if needed
|
535 |
+
self.has_delete_gate = has_delete_gate
|
536 |
+
if self.has_delete_gate:
|
537 |
+
if config.deletion_type == "scaled_sigmoid":
|
538 |
+
self.delete_gate = SigmoidDeleteGate(config)
|
539 |
+
elif config.deletion_type == "log_sigmoid":
|
540 |
+
self.delete_gate = LogSigmoidDeleteGate(config)
|
541 |
+
elif config.deletion_type == "random":
|
542 |
+
self.delete_gate = RandomDeleteGate(config)
|
543 |
+
elif config.deletion_type == "fixed":
|
544 |
+
self.delete_gate = FixedDeleteGate(config)
|
545 |
+
else:
|
546 |
+
raise ValueError(
|
547 |
+
f"Invalid deletion type: {config.deletion_type}")
|
548 |
+
|
549 |
+
# Set hard_delete flags
|
550 |
+
self.sigmoid_mask_scale = config.sigmoid_mask_scale
|
551 |
+
self.deletion_threshold = config.deletion_threshold
|
552 |
+
#### NEW CODE ####
|
553 |
+
|
554 |
+
#### NEW CODE ####
|
555 |
+
|
556 |
+
def __get_new_positions_and_mask(self, batch_size, seq_len, delete_gate_mask, deletion_threshold, device):
|
557 |
+
delete_gate_mask = delete_gate_mask.squeeze(-1)
|
558 |
+
|
559 |
+
# Create filter from delete gate mask
|
560 |
+
deletion_threshold = deletion_threshold if deletion_threshold is not None else self.deletion_threshold
|
561 |
+
keep_this = delete_gate_mask > deletion_threshold
|
562 |
+
|
563 |
+
# Calculate the target position for each token
|
564 |
+
target_pos = torch.cumsum(keep_this, dim=1) - 1
|
565 |
+
new_len = target_pos[:, -1].max().item() + 1
|
566 |
+
|
567 |
+
# Clamp the target position to avoid out of bounds when deleting everything
|
568 |
+
target_pos = target_pos.clamp(min=0)
|
569 |
+
|
570 |
+
# Map the positions to the src side. Do this in int32, because it's faster and we will not have sequences
|
571 |
+
# longer than 2^31
|
572 |
+
positions = torch.arange(seq_len, device=device, dtype=torch.int32).repeat(batch_size, 1)
|
573 |
+
positions *= keep_this.int()
|
574 |
+
|
575 |
+
src_side_pos = torch.zeros(batch_size, new_len, device=device, dtype=torch.int32)
|
576 |
+
src_side_pos.scatter_add_(1, target_pos, positions)
|
577 |
+
|
578 |
+
# Create the new mask
|
579 |
+
new_mask = torch.arange(new_len, device=device).expand(batch_size, -1) <= target_pos[:, -1:]
|
580 |
+
new_mask = (~new_mask).float() * -1e9
|
581 |
+
new_mask = new_mask.unsqueeze(-1)
|
582 |
+
|
583 |
+
return src_side_pos.long(), new_mask
|
584 |
+
|
585 |
+
def __hard_delete_hidden_states(self, hidden_states, positions):
|
586 |
+
new_hidden_states = torch.gather(hidden_states, 1, positions.unsqueeze(2).expand(-1, -1, hidden_states.size(2)))
|
587 |
+
return new_hidden_states
|
588 |
+
|
589 |
+
def __hard_delete_4_dimensions(self, position_bias, positions):
|
590 |
+
new_position_bias = torch.gather(position_bias, 1, positions.unsqueeze(2).unsqueeze(3).expand(-1, -1, position_bias.size(2), position_bias.size(3)))
|
591 |
+
return new_position_bias
|
592 |
+
|
593 |
+
#### NEW CODE ####
|
594 |
+
|
595 |
+
def forward(
|
596 |
+
self,
|
597 |
+
hidden_states,
|
598 |
+
attention_mask=None,
|
599 |
+
position_bias=None,
|
600 |
+
encoder_hidden_states=None,
|
601 |
+
encoder_attention_mask=None,
|
602 |
+
encoder_decoder_position_bias=None,
|
603 |
+
layer_head_mask=None,
|
604 |
+
cross_attn_layer_head_mask=None,
|
605 |
+
past_key_value=None,
|
606 |
+
use_cache=False,
|
607 |
+
output_attentions=False,
|
608 |
+
return_dict=True,
|
609 |
+
#### NEW CODE ####
|
610 |
+
delete_gate_mask=None,
|
611 |
+
input_ids=None,
|
612 |
+
hard_delete=None,
|
613 |
+
deletion_threshold=None,
|
614 |
+
#### NEW CODE ####
|
615 |
+
):
|
616 |
+
if past_key_value is not None:
|
617 |
+
if not self.is_decoder:
|
618 |
+
logger.warning(
|
619 |
+
"`past_key_values` is passed to the encoder. Please make sure this is intended.")
|
620 |
+
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
|
621 |
+
|
622 |
+
if len(past_key_value) != expected_num_past_key_values:
|
623 |
+
raise ValueError(
|
624 |
+
f"There should be {expected_num_past_key_values} past states. "
|
625 |
+
f"{'2 (key / value) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
|
626 |
+
f"Got {len(past_key_value)} past key / value states"
|
627 |
+
)
|
628 |
+
|
629 |
+
self_attn_past_key_value = past_key_value[:2]
|
630 |
+
cross_attn_past_key_value = past_key_value[2:]
|
631 |
+
else:
|
632 |
+
self_attn_past_key_value, cross_attn_past_key_value = None, None
|
633 |
+
|
634 |
+
##### NEW CODE #####
|
635 |
+
# Initialize delete gate values and logits for logging/loss calculation
|
636 |
+
delete_gate_values = None
|
637 |
+
delete_gate_logits = None
|
638 |
+
|
639 |
+
if self.has_delete_gate:
|
640 |
+
delete_gate_values, delete_gate_logits = self.delete_gate(
|
641 |
+
hidden_states, input_ids)
|
642 |
+
delete_gate_mask = delete_gate_values
|
643 |
+
|
644 |
+
# Raise error if all tokens are deleted in any sequence in batch
|
645 |
+
if (delete_gate_values < self.deletion_threshold).all():
|
646 |
+
raise ValueError("All tokens are deleted in this batch. " + \
|
647 |
+
"Please adjust the deletion rate or " + \
|
648 |
+
"alpha hyperparameter.")
|
649 |
+
|
650 |
+
# Apply hard deletion
|
651 |
+
if hard_delete:
|
652 |
+
|
653 |
+
# Compute new token positions
|
654 |
+
new_positions, delete_gate_mask = self.__get_new_positions_and_mask(
|
655 |
+
hidden_states.size(0), hidden_states.size(1), delete_gate_mask, deletion_threshold, hidden_states.device)
|
656 |
+
|
657 |
+
# Compute new position bias
|
658 |
+
if position_bias is not None:
|
659 |
+
new_position_bias = self.__hard_delete_4_dimensions(
|
660 |
+
position_bias.permute(0, 2, 3, 1), new_positions)
|
661 |
+
new_position_bias = self.__hard_delete_4_dimensions(
|
662 |
+
new_position_bias.permute(0, 2, 1, 3), new_positions)
|
663 |
+
position_bias = new_position_bias.permute(0, 3, 2, 1)
|
664 |
+
|
665 |
+
# Compute new attention mask
|
666 |
+
new_attention_mask = self.__hard_delete_4_dimensions(
|
667 |
+
attention_mask.permute(0, 3, 1, 2), new_positions)
|
668 |
+
attention_mask = new_attention_mask.permute(0, 2, 3, 1)
|
669 |
+
|
670 |
+
# Compute new hidden states and delete gate mask
|
671 |
+
hidden_states = self.__hard_delete_hidden_states(
|
672 |
+
hidden_states, new_positions)
|
673 |
+
|
674 |
+
##### NEW CODE #####
|
675 |
+
|
676 |
+
self_attention_outputs = self.layer[0](
|
677 |
+
hidden_states,
|
678 |
+
attention_mask=attention_mask,
|
679 |
+
position_bias=position_bias,
|
680 |
+
layer_head_mask=layer_head_mask,
|
681 |
+
past_key_value=self_attn_past_key_value,
|
682 |
+
use_cache=use_cache,
|
683 |
+
output_attentions=output_attentions,
|
684 |
+
#### NEW CODE ####
|
685 |
+
# Only apply delete_gate_mask to self-attention if the block
|
686 |
+
# is the encoder
|
687 |
+
delete_gate_mask=None if self.is_decoder else delete_gate_mask,
|
688 |
+
#### NEW CODE ####
|
689 |
+
)
|
690 |
+
hidden_states, present_key_value_state = self_attention_outputs[:2]
|
691 |
+
# Keep self-attention outputs and relative position weights
|
692 |
+
attention_outputs = self_attention_outputs[2:]
|
693 |
+
|
694 |
+
# clamp inf values to enable fp16 training
|
695 |
+
if hidden_states.dtype == torch.float16:
|
696 |
+
clamp_value = torch.where(
|
697 |
+
torch.isinf(hidden_states).any(),
|
698 |
+
torch.finfo(hidden_states.dtype).max - 1000,
|
699 |
+
torch.finfo(hidden_states.dtype).max,
|
700 |
+
)
|
701 |
+
hidden_states = torch.clamp(
|
702 |
+
hidden_states, min=-clamp_value, max=clamp_value)
|
703 |
+
|
704 |
+
do_cross_attention = self.is_decoder and encoder_hidden_states is not None
|
705 |
+
if do_cross_attention:
|
706 |
+
# the actual query length is unknown for cross attention
|
707 |
+
# if using past key value states. Need to inject it here
|
708 |
+
if present_key_value_state is not None:
|
709 |
+
query_length = present_key_value_state[0].shape[2]
|
710 |
+
else:
|
711 |
+
query_length = None
|
712 |
+
|
713 |
+
cross_attention_outputs = self.layer[1](
|
714 |
+
hidden_states,
|
715 |
+
key_value_states=encoder_hidden_states,
|
716 |
+
attention_mask=encoder_attention_mask,
|
717 |
+
position_bias=encoder_decoder_position_bias,
|
718 |
+
layer_head_mask=cross_attn_layer_head_mask,
|
719 |
+
past_key_value=cross_attn_past_key_value,
|
720 |
+
query_length=query_length,
|
721 |
+
use_cache=use_cache,
|
722 |
+
output_attentions=output_attentions,
|
723 |
+
#### NEW CODE ####
|
724 |
+
delete_gate_mask=delete_gate_mask,
|
725 |
+
#### NEW CODE ####
|
726 |
+
)
|
727 |
+
hidden_states = cross_attention_outputs[0]
|
728 |
+
|
729 |
+
# clamp inf values to enable fp16 training
|
730 |
+
if hidden_states.dtype == torch.float16:
|
731 |
+
clamp_value = torch.where(
|
732 |
+
torch.isinf(hidden_states).any(),
|
733 |
+
torch.finfo(hidden_states.dtype).max - 1000,
|
734 |
+
torch.finfo(hidden_states.dtype).max,
|
735 |
+
)
|
736 |
+
hidden_states = torch.clamp(
|
737 |
+
hidden_states, min=-clamp_value, max=clamp_value)
|
738 |
+
|
739 |
+
# Combine self attn and cross attn key value states
|
740 |
+
if present_key_value_state is not None:
|
741 |
+
present_key_value_state = present_key_value_state + \
|
742 |
+
cross_attention_outputs[1]
|
743 |
+
|
744 |
+
# Keep cross-attention outputs and relative position weights
|
745 |
+
attention_outputs = attention_outputs + cross_attention_outputs[2:]
|
746 |
+
|
747 |
+
# Apply Feed Forward layer
|
748 |
+
hidden_states = self.layer[-1](hidden_states)
|
749 |
+
|
750 |
+
# clamp inf values to enable fp16 training
|
751 |
+
if hidden_states.dtype == torch.float16:
|
752 |
+
clamp_value = torch.where(
|
753 |
+
torch.isinf(hidden_states).any(),
|
754 |
+
torch.finfo(hidden_states.dtype).max - 1000,
|
755 |
+
torch.finfo(hidden_states.dtype).max,
|
756 |
+
)
|
757 |
+
hidden_states = torch.clamp(
|
758 |
+
hidden_states, min=-clamp_value, max=clamp_value)
|
759 |
+
|
760 |
+
outputs = (hidden_states,)
|
761 |
+
|
762 |
+
if use_cache:
|
763 |
+
outputs = outputs + (present_key_value_state,) + attention_outputs
|
764 |
+
else:
|
765 |
+
outputs = outputs + attention_outputs
|
766 |
+
|
767 |
+
##### NEW CODE #####
|
768 |
+
if self.has_delete_gate:
|
769 |
+
outputs = outputs + \
|
770 |
+
(delete_gate_values, delete_gate_logits, delete_gate_mask, attention_mask)
|
771 |
+
##### NEW CODE #####
|
772 |
+
|
773 |
+
# hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights), (delete_gate_mask), (delete_gate_logits)
|
774 |
+
return outputs
|
775 |
+
|
776 |
+
|
777 |
+
class MrT5Stack(T5Stack):
|
778 |
+
def __init__(self, config, embed_tokens=None):
|
779 |
+
super().__init__(config, embed_tokens)
|
780 |
+
|
781 |
+
##### NEW CODE #####
|
782 |
+
if self.is_decoder:
|
783 |
+
self.block = nn.ModuleList(
|
784 |
+
[
|
785 |
+
MrT5Block(
|
786 |
+
config, has_relative_attention_bias=bool(i == 0))
|
787 |
+
for i in range(config.num_layers)
|
788 |
+
]
|
789 |
+
)
|
790 |
+
else:
|
791 |
+
blocks = []
|
792 |
+
for i in range(config.num_layers):
|
793 |
+
blocks.append(
|
794 |
+
MrT5Block(
|
795 |
+
config,
|
796 |
+
# Only the first layer has relative attention bias
|
797 |
+
has_relative_attention_bias=bool(i == 0),
|
798 |
+
# Add delete gate if specified
|
799 |
+
has_delete_gate=bool(i == config.delete_gate_layer),
|
800 |
+
)
|
801 |
+
)
|
802 |
+
self.block = nn.ModuleList(blocks)
|
803 |
+
##### NEW CODE #####
|
804 |
+
|
805 |
+
def forward(
|
806 |
+
self,
|
807 |
+
input_ids=None,
|
808 |
+
attention_mask=None,
|
809 |
+
encoder_hidden_states=None,
|
810 |
+
encoder_attention_mask=None,
|
811 |
+
inputs_embeds=None,
|
812 |
+
head_mask=None,
|
813 |
+
cross_attn_head_mask=None,
|
814 |
+
past_key_values=None,
|
815 |
+
use_cache=None,
|
816 |
+
output_attentions=None,
|
817 |
+
output_hidden_states=None,
|
818 |
+
return_dict=None,
|
819 |
+
#### NEW CODE ####
|
820 |
+
delete_gate_mask=None,
|
821 |
+
delete_gate_output=None,
|
822 |
+
delete_gate_logits=None,
|
823 |
+
hard_delete=None,
|
824 |
+
deletion_threshold=None,
|
825 |
+
#### NEW CODE ####
|
826 |
+
):
|
827 |
+
# Model parallel
|
828 |
+
if self.model_parallel:
|
829 |
+
torch.cuda.set_device(self.first_device)
|
830 |
+
self.embed_tokens = self.embed_tokens.to(self.first_device)
|
831 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
832 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
833 |
+
output_hidden_states = (
|
834 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
835 |
+
)
|
836 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
837 |
+
|
838 |
+
if input_ids is not None and inputs_embeds is not None:
|
839 |
+
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
840 |
+
raise ValueError(
|
841 |
+
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
|
842 |
+
)
|
843 |
+
elif input_ids is not None:
|
844 |
+
input_shape = input_ids.size()
|
845 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
846 |
+
elif inputs_embeds is not None:
|
847 |
+
input_shape = inputs_embeds.size()[:-1]
|
848 |
+
else:
|
849 |
+
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
850 |
+
raise ValueError(
|
851 |
+
f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
|
852 |
+
|
853 |
+
if inputs_embeds is None:
|
854 |
+
if self.embed_tokens is None:
|
855 |
+
raise ValueError(
|
856 |
+
"You have to initialize the model with valid token embeddings")
|
857 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
858 |
+
|
859 |
+
#### NEW CODE ####
|
860 |
+
if self.absolute_pos_embed is not None:
|
861 |
+
position_ids = torch.arange(input_shape[-1], dtype=torch.long, device=inputs_embeds.device)
|
862 |
+
position_embeds = self.absolute_pos_embed(position_ids)
|
863 |
+
inputs_embeds = inputs_embeds + position_embeds
|
864 |
+
#### NEW CODE ####
|
865 |
+
|
866 |
+
batch_size, seq_length = input_shape
|
867 |
+
|
868 |
+
# required mask seq length can be calculated via length of past
|
869 |
+
mask_seq_length = past_key_values[0][0].shape[2] + \
|
870 |
+
seq_length if past_key_values is not None else seq_length
|
871 |
+
|
872 |
+
if use_cache is True:
|
873 |
+
if not self.is_decoder:
|
874 |
+
raise ValueError(
|
875 |
+
f"`use_cache` can only be set to `True` if {self} is used as a decoder")
|
876 |
+
|
877 |
+
# initialize past_key_values with `None` if past does not exist
|
878 |
+
if past_key_values is None:
|
879 |
+
past_key_values = [None] * len(self.block)
|
880 |
+
|
881 |
+
if attention_mask is None:
|
882 |
+
attention_mask = torch.ones(
|
883 |
+
batch_size, mask_seq_length, device=inputs_embeds.device)
|
884 |
+
|
885 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
886 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
887 |
+
extended_attention_mask = self.get_extended_attention_mask(
|
888 |
+
attention_mask, input_shape)
|
889 |
+
|
890 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
891 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
892 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
893 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
894 |
+
encoder_hidden_shape = (
|
895 |
+
encoder_batch_size, encoder_sequence_length)
|
896 |
+
if encoder_attention_mask is None:
|
897 |
+
encoder_attention_mask = torch.ones(
|
898 |
+
encoder_hidden_shape, device=inputs_embeds.device, dtype=torch.long
|
899 |
+
)
|
900 |
+
encoder_extended_attention_mask = self.invert_attention_mask(
|
901 |
+
encoder_attention_mask)
|
902 |
+
else:
|
903 |
+
encoder_extended_attention_mask = None
|
904 |
+
|
905 |
+
if self.gradient_checkpointing and self.training:
|
906 |
+
if use_cache:
|
907 |
+
logger.warning_once(
|
908 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
909 |
+
)
|
910 |
+
use_cache = False
|
911 |
+
|
912 |
+
#### NEW CODE ####
|
913 |
+
# Return a new encoder attention mask if hard delete is enabled
|
914 |
+
attention_mask_to_return = None
|
915 |
+
#### NEW CODE ####
|
916 |
+
|
917 |
+
# Prepare head mask if needed
|
918 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
|
919 |
+
cross_attn_head_mask = self.get_head_mask(
|
920 |
+
cross_attn_head_mask, self.config.num_layers)
|
921 |
+
present_key_value_states = () if use_cache else None
|
922 |
+
all_hidden_states = () if output_hidden_states else None
|
923 |
+
all_attentions = () if output_attentions else None
|
924 |
+
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
|
925 |
+
position_bias = None
|
926 |
+
encoder_decoder_position_bias = None
|
927 |
+
|
928 |
+
#### NEW CODE ####
|
929 |
+
all_queries = () if output_attentions else None
|
930 |
+
all_keys = () if output_attentions else None
|
931 |
+
all_values = () if output_attentions else None
|
932 |
+
all_scores = () if output_attentions else None
|
933 |
+
all_cross_attn_queries = () if (output_attentions and self.is_decoder) else None
|
934 |
+
all_cross_attn_keys = () if (output_attentions and self.is_decoder) else None
|
935 |
+
all_cross_attn_values = () if (output_attentions and self.is_decoder) else None
|
936 |
+
all_cross_attn_scores = () if (output_attentions and self.is_decoder) else None
|
937 |
+
#### NEW CODE ####
|
938 |
+
|
939 |
+
hidden_states = self.dropout(inputs_embeds)
|
940 |
+
|
941 |
+
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
|
942 |
+
layer_head_mask = head_mask[i]
|
943 |
+
cross_attn_layer_head_mask = cross_attn_head_mask[i]
|
944 |
+
# Model parallel
|
945 |
+
if self.model_parallel:
|
946 |
+
torch.cuda.set_device(hidden_states.device)
|
947 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
948 |
+
if attention_mask is not None:
|
949 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
950 |
+
if position_bias is not None:
|
951 |
+
position_bias = position_bias.to(hidden_states.device)
|
952 |
+
if encoder_hidden_states is not None:
|
953 |
+
encoder_hidden_states = encoder_hidden_states.to(
|
954 |
+
hidden_states.device)
|
955 |
+
if encoder_extended_attention_mask is not None:
|
956 |
+
encoder_extended_attention_mask = encoder_extended_attention_mask.to(
|
957 |
+
hidden_states.device)
|
958 |
+
if encoder_decoder_position_bias is not None:
|
959 |
+
encoder_decoder_position_bias = encoder_decoder_position_bias.to(
|
960 |
+
hidden_states.device)
|
961 |
+
if layer_head_mask is not None:
|
962 |
+
layer_head_mask = layer_head_mask.to(hidden_states.device)
|
963 |
+
if cross_attn_layer_head_mask is not None:
|
964 |
+
cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(
|
965 |
+
hidden_states.device)
|
966 |
+
if output_hidden_states:
|
967 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
968 |
+
|
969 |
+
if self.gradient_checkpointing and self.training:
|
970 |
+
layer_outputs = self._gradient_checkpointing_func(
|
971 |
+
layer_module.forward,
|
972 |
+
hidden_states,
|
973 |
+
extended_attention_mask,
|
974 |
+
position_bias,
|
975 |
+
encoder_hidden_states,
|
976 |
+
encoder_extended_attention_mask,
|
977 |
+
encoder_decoder_position_bias,
|
978 |
+
layer_head_mask,
|
979 |
+
cross_attn_layer_head_mask,
|
980 |
+
None, # past_key_value is always None with gradient checkpointing
|
981 |
+
use_cache,
|
982 |
+
output_attentions,
|
983 |
+
#### NEW CODE ####
|
984 |
+
delete_gate_mask,
|
985 |
+
#### NEW CODE ####
|
986 |
+
)
|
987 |
+
else:
|
988 |
+
layer_outputs = layer_module(
|
989 |
+
hidden_states,
|
990 |
+
attention_mask=extended_attention_mask,
|
991 |
+
position_bias=position_bias,
|
992 |
+
encoder_hidden_states=encoder_hidden_states,
|
993 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
994 |
+
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
995 |
+
layer_head_mask=layer_head_mask,
|
996 |
+
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
|
997 |
+
past_key_value=past_key_value,
|
998 |
+
use_cache=use_cache,
|
999 |
+
output_attentions=output_attentions,
|
1000 |
+
#### NEW CODE ####
|
1001 |
+
delete_gate_mask=delete_gate_mask,
|
1002 |
+
input_ids=input_ids,
|
1003 |
+
hard_delete=hard_delete,
|
1004 |
+
deletion_threshold=deletion_threshold,
|
1005 |
+
#### NEW CODE ####
|
1006 |
+
)
|
1007 |
+
|
1008 |
+
#### NEW CODE ####
|
1009 |
+
# Update delete_gate_mask if the previous layer had a delete gate
|
1010 |
+
if layer_module.has_delete_gate:
|
1011 |
+
delete_gate_output, delete_gate_logits, delete_gate_mask, new_attention_mask = layer_outputs[-4], layer_outputs[-3], layer_outputs[-2], layer_outputs[-1]
|
1012 |
+
|
1013 |
+
# Update resized masks if the previous layer did a hard deletion
|
1014 |
+
if hard_delete:
|
1015 |
+
extended_attention_mask = new_attention_mask
|
1016 |
+
attention_mask_to_return = extended_attention_mask.squeeze(-2).squeeze(-2)
|
1017 |
+
attention_mask_to_return = (attention_mask_to_return == 0).int()
|
1018 |
+
|
1019 |
+
#### NEW CODE ####
|
1020 |
+
|
1021 |
+
# layer_outputs is a tuple with:
|
1022 |
+
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
|
1023 |
+
if use_cache is False:
|
1024 |
+
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
|
1025 |
+
|
1026 |
+
hidden_states, present_key_value_state = layer_outputs[:2]
|
1027 |
+
|
1028 |
+
# We share the position biases between the layers - the first layer store them
|
1029 |
+
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
|
1030 |
+
# (cross-attention position bias), (cross-attention weights)
|
1031 |
+
position_bias = layer_outputs[2]
|
1032 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
1033 |
+
#### NEW CODE ####
|
1034 |
+
index = 4 if output_attentions else 3
|
1035 |
+
encoder_decoder_position_bias = layer_outputs[index]
|
1036 |
+
#### NEW CODE ####
|
1037 |
+
# append next layer key value states
|
1038 |
+
if use_cache:
|
1039 |
+
present_key_value_states = present_key_value_states + \
|
1040 |
+
(present_key_value_state,)
|
1041 |
+
|
1042 |
+
#### NEW CODE ####
|
1043 |
+
if output_attentions:
|
1044 |
+
attn_weights, keys, queries, values, scores = layer_outputs[3]
|
1045 |
+
all_attentions = all_attentions + (attn_weights,)
|
1046 |
+
all_queries = all_queries + (queries,)
|
1047 |
+
all_keys = all_keys + (keys,)
|
1048 |
+
all_values = all_values + (values,)
|
1049 |
+
all_scores = all_scores + (scores,)
|
1050 |
+
|
1051 |
+
if self.is_decoder:
|
1052 |
+
cross_attn_weights, cross_attn_keys, cross_attn_queries, \
|
1053 |
+
cross_attn_values, cross_attn_scores = layer_outputs[5]
|
1054 |
+
all_cross_attentions = all_cross_attentions + \
|
1055 |
+
(cross_attn_weights,)
|
1056 |
+
all_cross_attn_queries = all_cross_attn_queries + \
|
1057 |
+
(cross_attn_queries,)
|
1058 |
+
all_cross_attn_keys = all_cross_attn_keys + \
|
1059 |
+
(cross_attn_keys,)
|
1060 |
+
all_cross_attn_values = all_cross_attn_values + \
|
1061 |
+
(cross_attn_values,)
|
1062 |
+
all_cross_attn_scores = all_cross_attn_scores + \
|
1063 |
+
(cross_attn_scores,)
|
1064 |
+
#### NEW CODE ####
|
1065 |
+
|
1066 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
1067 |
+
if self.model_parallel:
|
1068 |
+
for k, v in self.device_map.items():
|
1069 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
1070 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
1071 |
+
|
1072 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
1073 |
+
hidden_states = self.dropout(hidden_states)
|
1074 |
+
|
1075 |
+
# Add last layer
|
1076 |
+
if output_hidden_states:
|
1077 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1078 |
+
|
1079 |
+
if not return_dict:
|
1080 |
+
return tuple(
|
1081 |
+
v
|
1082 |
+
for v in [
|
1083 |
+
hidden_states,
|
1084 |
+
present_key_value_states,
|
1085 |
+
all_hidden_states,
|
1086 |
+
all_attentions,
|
1087 |
+
all_cross_attentions,
|
1088 |
+
#### NEW CODE ####
|
1089 |
+
delete_gate_mask,
|
1090 |
+
delete_gate_output,
|
1091 |
+
delete_gate_logits,
|
1092 |
+
attention_mask_to_return,
|
1093 |
+
all_queries,
|
1094 |
+
all_keys,
|
1095 |
+
all_values,
|
1096 |
+
all_scores,
|
1097 |
+
all_cross_attn_queries,
|
1098 |
+
all_cross_attn_keys,
|
1099 |
+
all_cross_attn_values,
|
1100 |
+
all_cross_attn_scores,
|
1101 |
+
#### NEW CODE ####
|
1102 |
+
]
|
1103 |
+
if v is not None
|
1104 |
+
)
|
1105 |
+
|
1106 |
+
return MrT5BaseModelOutputWithPastAndCrossAttentions(
|
1107 |
+
last_hidden_state=hidden_states,
|
1108 |
+
past_key_values=present_key_value_states,
|
1109 |
+
hidden_states=all_hidden_states,
|
1110 |
+
attentions=all_attentions,
|
1111 |
+
cross_attentions=all_cross_attentions,
|
1112 |
+
#### NEW CODE ####
|
1113 |
+
delete_gate_mask=delete_gate_mask,
|
1114 |
+
delete_gate_output=delete_gate_output,
|
1115 |
+
delete_gate_logits=delete_gate_logits,
|
1116 |
+
attention_mask=attention_mask_to_return,
|
1117 |
+
attention_queries=all_queries,
|
1118 |
+
attention_keys=all_keys,
|
1119 |
+
attention_values=all_values,
|
1120 |
+
attention_scores=all_scores,
|
1121 |
+
cross_attention_queries=all_cross_attn_queries,
|
1122 |
+
cross_attention_keys=all_cross_attn_keys,
|
1123 |
+
cross_attention_values=all_cross_attn_values,
|
1124 |
+
cross_attention_scores=all_cross_attn_scores,
|
1125 |
+
#### NEW CODE ####
|
1126 |
+
)
|
1127 |
+
|
1128 |
+
|
1129 |
+
class MrT5ForConditionalGeneration(T5ForConditionalGeneration):
|
1130 |
+
|
1131 |
+
config_class = MrT5Config
|
1132 |
+
|
1133 |
+
def __init__(self, config: MrT5Config):
|
1134 |
+
super().__init__(config)
|
1135 |
+
#### NEW CODE ####
|
1136 |
+
encoder_config = copy.deepcopy(config)
|
1137 |
+
encoder_config.is_decoder = False
|
1138 |
+
encoder_config.use_cache = False
|
1139 |
+
encoder_config.is_encoder_decoder = False
|
1140 |
+
self.encoder = MrT5Stack(encoder_config, self.shared)
|
1141 |
+
|
1142 |
+
decoder_config = copy.deepcopy(config)
|
1143 |
+
decoder_config.is_decoder = True
|
1144 |
+
decoder_config.is_encoder_decoder = False
|
1145 |
+
decoder_config.num_layers = config.num_decoder_layers
|
1146 |
+
self.decoder = MrT5Stack(decoder_config, self.shared)
|
1147 |
+
#### NEW CODE ####
|
1148 |
+
|
1149 |
+
def forward(
|
1150 |
+
self,
|
1151 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1152 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1153 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1154 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
1155 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1156 |
+
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
1157 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1158 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1159 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1160 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1161 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
1162 |
+
labels: Optional[torch.LongTensor] = None,
|
1163 |
+
use_cache: Optional[bool] = None,
|
1164 |
+
output_attentions: Optional[bool] = None,
|
1165 |
+
output_hidden_states: Optional[bool] = None,
|
1166 |
+
return_dict: Optional[bool] = None,
|
1167 |
+
#### NEW CODE ####
|
1168 |
+
hard_delete: bool = False,
|
1169 |
+
deletion_threshold: Optional[float] = None,
|
1170 |
+
#### NEW CODE ####
|
1171 |
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
|
1172 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1173 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1174 |
+
|
1175 |
+
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
|
1176 |
+
if head_mask is not None and decoder_head_mask is None:
|
1177 |
+
if self.config.num_layers == self.config.num_decoder_layers:
|
1178 |
+
decoder_head_mask = head_mask
|
1179 |
+
|
1180 |
+
# Encode if needed (training, first prediction pass)
|
1181 |
+
if encoder_outputs is None:
|
1182 |
+
# Convert encoder inputs in embeddings if needed
|
1183 |
+
encoder_outputs = self.encoder(
|
1184 |
+
input_ids=input_ids,
|
1185 |
+
attention_mask=attention_mask,
|
1186 |
+
inputs_embeds=inputs_embeds,
|
1187 |
+
head_mask=head_mask,
|
1188 |
+
output_attentions=output_attentions,
|
1189 |
+
output_hidden_states=output_hidden_states,
|
1190 |
+
return_dict=return_dict,
|
1191 |
+
#### NEW CODE ####
|
1192 |
+
hard_delete=hard_delete,
|
1193 |
+
deletion_threshold=deletion_threshold,
|
1194 |
+
#### NEW CODE ####
|
1195 |
+
)
|
1196 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
1197 |
+
#### NEW CODE ####
|
1198 |
+
encoder_outputs = MrT5BaseModelOutputWithPastAndCrossAttentions(
|
1199 |
+
last_hidden_state=encoder_outputs.last_hidden_state,
|
1200 |
+
hidden_states=encoder_outputs.hidden_states if 'hidden_states' in encoder_outputs else None,
|
1201 |
+
attentions=encoder_outputs.attentions if 'attentions' in encoder_outputs else None,
|
1202 |
+
delete_gate_mask=encoder_outputs.delete_gate_mask if 'delete_gate_mask' in encoder_outputs else None,
|
1203 |
+
)
|
1204 |
+
#### NEW CODE ####
|
1205 |
+
|
1206 |
+
#### NEW CODE ####
|
1207 |
+
|
1208 |
+
hidden_states = encoder_outputs.last_hidden_state
|
1209 |
+
attention_mask = encoder_outputs.attention_mask if 'attention_mask' in encoder_outputs else attention_mask
|
1210 |
+
|
1211 |
+
#### NEW CODE ####
|
1212 |
+
|
1213 |
+
if self.model_parallel:
|
1214 |
+
torch.cuda.set_device(self.decoder.first_device)
|
1215 |
+
|
1216 |
+
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
|
1217 |
+
# get decoder inputs from shifting lm labels to the right
|
1218 |
+
decoder_input_ids = self._shift_right(labels)
|
1219 |
+
|
1220 |
+
# Set device for model parallelism
|
1221 |
+
if self.model_parallel:
|
1222 |
+
torch.cuda.set_device(self.decoder.first_device)
|
1223 |
+
hidden_states = hidden_states.to(self.decoder.first_device)
|
1224 |
+
if decoder_input_ids is not None:
|
1225 |
+
decoder_input_ids = decoder_input_ids.to(
|
1226 |
+
self.decoder.first_device)
|
1227 |
+
if attention_mask is not None:
|
1228 |
+
attention_mask = attention_mask.to(self.decoder.first_device)
|
1229 |
+
if decoder_attention_mask is not None:
|
1230 |
+
decoder_attention_mask = decoder_attention_mask.to(
|
1231 |
+
self.decoder.first_device)
|
1232 |
+
|
1233 |
+
# Decode
|
1234 |
+
decoder_outputs = self.decoder(
|
1235 |
+
input_ids=decoder_input_ids,
|
1236 |
+
attention_mask=decoder_attention_mask,
|
1237 |
+
inputs_embeds=decoder_inputs_embeds,
|
1238 |
+
past_key_values=past_key_values,
|
1239 |
+
encoder_hidden_states=hidden_states,
|
1240 |
+
encoder_attention_mask=attention_mask,
|
1241 |
+
head_mask=decoder_head_mask,
|
1242 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1243 |
+
use_cache=use_cache,
|
1244 |
+
output_attentions=output_attentions,
|
1245 |
+
output_hidden_states=output_hidden_states,
|
1246 |
+
return_dict=return_dict,
|
1247 |
+
#### NEW CODE ####
|
1248 |
+
delete_gate_mask=encoder_outputs.delete_gate_mask,
|
1249 |
+
#### NEW CODE ####
|
1250 |
+
)
|
1251 |
+
|
1252 |
+
sequence_output = decoder_outputs[0]
|
1253 |
+
|
1254 |
+
# Set device for model parallelism
|
1255 |
+
if self.model_parallel:
|
1256 |
+
torch.cuda.set_device(self.encoder.first_device)
|
1257 |
+
self.lm_head = self.lm_head.to(self.encoder.first_device)
|
1258 |
+
sequence_output = sequence_output.to(self.lm_head.weight.device)
|
1259 |
+
|
1260 |
+
if self.config.tie_word_embeddings:
|
1261 |
+
# Rescale output before projecting on vocab
|
1262 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
|
1263 |
+
sequence_output = sequence_output * (self.model_dim**-0.5)
|
1264 |
+
|
1265 |
+
lm_logits = self.lm_head(sequence_output)
|
1266 |
+
|
1267 |
+
loss = None
|
1268 |
+
if labels is not None:
|
1269 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
|
1270 |
+
# move labels to correct device to enable PP
|
1271 |
+
labels = labels.to(lm_logits.device)
|
1272 |
+
loss = loss_fct(
|
1273 |
+
lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
|
1274 |
+
# TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
|
1275 |
+
|
1276 |
+
if not return_dict:
|
1277 |
+
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
|
1278 |
+
return ((loss,) + output) if loss is not None else output
|
1279 |
+
|
1280 |
+
##### NEW CODE #####
|
1281 |
+
return MrT5Seq2SeqLMOutput(
|
1282 |
+
loss=loss,
|
1283 |
+
logits=lm_logits,
|
1284 |
+
past_key_values=decoder_outputs.past_key_values,
|
1285 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
1286 |
+
decoder_attentions=decoder_outputs.attentions,
|
1287 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1288 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
1289 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
1290 |
+
encoder_attentions=encoder_outputs.attentions,
|
1291 |
+
delete_gate_mask=encoder_outputs.delete_gate_mask,
|
1292 |
+
delete_gate_output=encoder_outputs.delete_gate_output,
|
1293 |
+
delete_gate_logits=encoder_outputs.delete_gate_logits,
|
1294 |
+
encoder_keys=encoder_outputs.attention_keys,
|
1295 |
+
encoder_queries=encoder_outputs.attention_queries,
|
1296 |
+
encoder_values=encoder_outputs.attention_values,
|
1297 |
+
encoder_scores=encoder_outputs.attention_scores,
|
1298 |
+
decoder_keys=decoder_outputs.attention_keys,
|
1299 |
+
decoder_queries=decoder_outputs.attention_queries,
|
1300 |
+
decoder_values=decoder_outputs.attention_values,
|
1301 |
+
decoder_scores=decoder_outputs.attention_scores,
|
1302 |
+
cross_attention_queries=decoder_outputs.cross_attention_queries,
|
1303 |
+
cross_attention_keys=decoder_outputs.cross_attention_keys,
|
1304 |
+
cross_attention_values=decoder_outputs.cross_attention_values,
|
1305 |
+
cross_attention_scores=decoder_outputs.cross_attention_scores,
|
1306 |
+
)
|
1307 |
+
##### NEW CODE #####
|
1308 |
+
|
1309 |
+
def prepare_inputs_for_generation(
|
1310 |
+
self,
|
1311 |
+
input_ids,
|
1312 |
+
past_key_values=None,
|
1313 |
+
attention_mask=None,
|
1314 |
+
head_mask=None,
|
1315 |
+
decoder_head_mask=None,
|
1316 |
+
decoder_attention_mask=None,
|
1317 |
+
cross_attn_head_mask=None,
|
1318 |
+
use_cache=None,
|
1319 |
+
encoder_outputs=None,
|
1320 |
+
**kwargs,
|
1321 |
+
):
|
1322 |
+
# cut decoder_input_ids if past_key_values is used
|
1323 |
+
if past_key_values is not None:
|
1324 |
+
past_length = past_key_values[0][0].shape[2]
|
1325 |
+
|
1326 |
+
# Some generation methods already pass only the last input ID
|
1327 |
+
if input_ids.shape[1] > past_length:
|
1328 |
+
remove_prefix_length = past_length
|
1329 |
+
else:
|
1330 |
+
# Default to old behavior: keep only final ID
|
1331 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1332 |
+
|
1333 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1334 |
+
|
1335 |
+
##### NEW CODE #####
|
1336 |
+
# TODO: Generation will need special handling of attention masks, which
|
1337 |
+
# will need to be resized if hard delete is enabled. For now, we will
|
1338 |
+
# simply omit the encoder attention mask for generation.
|
1339 |
+
attention_mask = None
|
1340 |
+
##### NEW CODE #####
|
1341 |
+
|
1342 |
+
return {
|
1343 |
+
"decoder_input_ids": input_ids,
|
1344 |
+
"past_key_values": past_key_values,
|
1345 |
+
"encoder_outputs": encoder_outputs,
|
1346 |
+
"attention_mask": attention_mask,
|
1347 |
+
"head_mask": head_mask,
|
1348 |
+
"decoder_head_mask": decoder_head_mask,
|
1349 |
+
"decoder_attention_mask": decoder_attention_mask,
|
1350 |
+
"cross_attn_head_mask": cross_attn_head_mask,
|
1351 |
+
"use_cache": use_cache,
|
1352 |
+
}
|