# modeling_mrt5.py # Author: Julie Kallini # Description: This file contains the implementation of the MrT5 model. # The code is adapted from HuggingFace's modeling_t5.py. New code sequences # are labeled with comments. import torch import copy import numpy as np from torch import nn from .modeling_t5 import ( T5Attention, T5LayerNorm, T5LayerFF, T5Stack, T5ForConditionalGeneration, softmax1, ) from .configuration_mrt5 import MrT5Config from transformers.modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput, ) from transformers.utils import logging from typing import Optional, Tuple, Union from dataclasses import dataclass logger = logging.get_logger(__name__) @dataclass class MrT5BaseModelOutputWithPastAndCrossAttentions(BaseModelOutputWithPastAndCrossAttentions): delete_gate_mask: torch.FloatTensor = None delete_gate_output: torch.FloatTensor = None delete_gate_logits: torch.FloatTensor = None attention_mask: torch.FloatTensor = None attention_queries: torch.FloatTensor = None attention_keys: torch.FloatTensor = None attention_values: torch.FloatTensor = None attention_scores: torch.FloatTensor = None cross_attention_keys: torch.FloatTensor = None cross_attention_queries: torch.FloatTensor = None cross_attention_values: torch.FloatTensor = None cross_attention_scores: torch.FloatTensor = None @dataclass class MrT5Seq2SeqLMOutput(Seq2SeqLMOutput): delete_gate_mask: torch.FloatTensor = None delete_gate_output: torch.FloatTensor = None delete_gate_logits: torch.FloatTensor = None encoder_keys: torch.FloatTensor = None encoder_queries: torch.FloatTensor = None encoder_values: torch.FloatTensor = None encoder_scores: torch.FloatTensor = None decoder_keys: torch.FloatTensor = None decoder_queries: torch.FloatTensor = None decoder_values: torch.FloatTensor = None decoder_scores: torch.FloatTensor = None cross_attention_keys: torch.FloatTensor = None cross_attention_queries: torch.FloatTensor = None cross_attention_values: torch.FloatTensor = None cross_attention_scores: torch.FloatTensor = None TORCH_INIT_FUNCTIONS = { "uniform_": nn.init.uniform_, "normal_": nn.init.normal_, "trunc_normal_": nn.init.trunc_normal_, "constant_": nn.init.constant_, "xavier_uniform_": nn.init.xavier_uniform_, "xavier_normal_": nn.init.xavier_normal_, "kaiming_uniform_": nn.init.kaiming_uniform_, "kaiming_normal_": nn.init.kaiming_normal_, "uniform": nn.init.uniform, "normal": nn.init.normal, "xavier_uniform": nn.init.xavier_uniform, "xavier_normal": nn.init.xavier_normal, "kaiming_uniform": nn.init.kaiming_uniform, "kaiming_normal": nn.init.kaiming_normal, } class ScaledSigmoid(nn.Module): def __init__(self, sigmoid_mask_scale): super().__init__() self.sigmoid_mask_scale = sigmoid_mask_scale def forward(self, input): return self.sigmoid_mask_scale * torch.sigmoid(-input) def gumbel_noise_like(x: torch.Tensor) -> torch.Tensor: eps = 3e-4 if x.dtype == torch.float16 else 1e-10 uniform = torch.empty_like(x).uniform_(eps, 1 - eps) return - (- uniform.log()).log() class SigmoidDeleteGate(nn.Module): def __init__(self, config): super().__init__() self.has_layer_norm = config.gate_layer_norm if self.has_layer_norm: self.layer_norm = T5LayerNorm(config.hidden_size) self.feed_forward = nn.Linear(config.hidden_size, 1) self._init_weights(self.feed_forward) self.activation = ScaledSigmoid(config.sigmoid_mask_scale) self.use_gumbel_noise = config.use_gumbel_noise def forward(self, hidden_states, input_ids): if self.has_layer_norm: hidden_states = self.layer_norm(hidden_states) delete_gate_logits = self.feed_forward(hidden_states) # Add gumbel noise to the delete gate logits if self.training and self.use_gumbel_noise: gumbel_noise = gumbel_noise_like(delete_gate_logits) delete_gate_logits += gumbel_noise gate_values = self.activation(delete_gate_logits) # Check if there are any pad tokens in input_ids if (input_ids == 0).any(): # Set gate values for pad tokens (input_ids == 0) to sigmoid_mask_scale pad_mask = (input_ids == 0).unsqueeze(-1) gate_values = torch.where(pad_mask, torch.tensor(self.activation.sigmoid_mask_scale), gate_values) return gate_values, delete_gate_logits def _init_weights(self, m, init_func="xavier_uniform_"): # Initialize the weights. This is necessary because # HuggingFace disables initialization during "from_pretrained" if isinstance(m, nn.Linear): TORCH_INIT_FUNCTIONS[init_func](m.weight) m.bias.data.fill_(1) class LogSigmoidDeleteGate(SigmoidDeleteGate): def __init__(self, config): super().__init__(config) self.activation = nn.LogSigmoid() class RandomDeleteGate(nn.Module): def __init__(self, config): super().__init__() # Store the sigmoid_mask_scale and the probability of activation self.sigmoid_mask_scale = config.sigmoid_mask_scale self.random_deletion_probability = config.random_deletion_probability def __random_mask_tensor(self, x, n): # Determine the shape for the output tensor target_shape = (x.shape[0], x.shape[1], 1) total_elements = x.shape[0] * x.shape[1] # Create a flattened float tensor of all 0.0 flat_tensor = torch.zeros(total_elements, dtype=torch.float32, device=x.device) # Randomly select n indices to be set to 1.0 indices = torch.randperm(total_elements)[:n] flat_tensor[indices] = 1.0 # Reshape it to match the desired target shape float_tensor = flat_tensor.view(target_shape) return float_tensor def forward(self, hidden_states, input_ids): # Calculate the number of tokens to delete using a gaussian deletion_percentage = np.random.normal(loc=self.random_deletion_probability, scale=0.05) n_deletions = int(deletion_percentage * hidden_states.shape[0] * hidden_states.shape[1]) # Create a random mask with n_deletions True values random_mask = self.__random_mask_tensor(hidden_states, n_deletions) # Scale the mask by sigmoid_mask_scale delete_gate_mask = random_mask * self.sigmoid_mask_scale return delete_gate_mask, delete_gate_mask class FixedDeleteGate(nn.Module): def __init__(self, config): super().__init__() self.sigmoid_mask_scale = config.sigmoid_mask_scale self.fixed_deletion_amount = config.fixed_deletion_amount self.sep_tokens = torch.tensor([12, 13, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 61, 62, 63, 64, 65, 66, 67, 94, 95, 96, 97, 98, 99, 126, 127, 128, 129, 1]) def __create_mask(self, input_ids): device = input_ids.device batch_size, seq_len = input_ids.size() self.sep_tokens = self.sep_tokens.to(device) # Create an initial mask filled with sigmoid_mask_scale mask = torch.full((batch_size, seq_len), self.sigmoid_mask_scale, device=device) # Find sep_token indices is_sep = torch.isin(input_ids, self.sep_tokens) # Create a tensor of segment lengths sep_positions = torch.cumsum(is_sep, dim=1) segment_lengths = torch.zeros_like(input_ids, dtype=torch.float) segment_lengths[:, 1:] = (sep_positions[:, 1:] != sep_positions[:, :-1]).float() segment_lengths[:, 0] = 1.0 segment_lengths = torch.cumsum(segment_lengths, dim=1) # Calculate number of zeros for each segment segment_counts = torch.bincount(sep_positions.view(-1), minlength=seq_len) segment_starts = torch.cumsum(torch.cat([torch.tensor([0], device=device), segment_counts[:-1]]), dim=0) segment_ends = torch.cumsum(segment_counts, dim=0) num_zeros = torch.ceil((1 - self.fixed_deletion_amount) * (segment_ends - segment_starts)).long() # Create the mask based on the calculated number of zeros for i in range(batch_size): for start, count in zip(segment_starts, num_zeros): mask[i, start:start + count] = 0 return mask.to(torch.float) def forward(self, hidden_states, input_ids): delete_gate_mask = self.__create_mask(input_ids).unsqueeze(-1) return delete_gate_mask, delete_gate_mask class MrT5Attention(T5Attention): """ Extends the T5Attention class to include a delete gate. Only the forward method is modified. The delete_gate_mask passed to the forward function is applied to the attention scores. """ def __init__(self, config: MrT5Config, has_relative_attention_bias=False): super().__init__(config, has_relative_attention_bias) #### NEW CODE #### self.use_softmax1 = config.use_softmax1 #### NEW CODE #### def forward( self, hidden_states, mask=None, key_value_states=None, position_bias=None, past_key_value=None, layer_head_mask=None, query_length=None, use_cache=False, output_attentions=False, #### NEW CODE #### delete_gate_mask=None, #### NEW CODE #### ): """ Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). """ # Input is (batch_size, seq_length, dim) # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) batch_size, seq_length = hidden_states.shape[:2] real_seq_length = seq_length if past_key_value is not None: if len(past_key_value) != 2: raise ValueError( f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" ) real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length key_length = real_seq_length if key_value_states is None else key_value_states.shape[ 1] def shape(states): """projection""" return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) def unshape(states): """reshape""" return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) def project(hidden_states, proj_layer, key_value_states, past_key_value): """projects hidden states correctly to key/query states""" if key_value_states is None: # self-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = shape(proj_layer(hidden_states)) elif past_key_value is None: # cross-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = shape(proj_layer(key_value_states)) if past_key_value is not None: if key_value_states is None: # self-attn # (batch_size, n_heads, key_length, dim_per_head) hidden_states = torch.cat( [past_key_value, hidden_states], dim=2) elif past_key_value.shape[2] != key_value_states.shape[1]: # checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning # cross-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = shape(proj_layer(key_value_states)) else: # cross-attn hidden_states = past_key_value return hidden_states # get query states # (batch_size, n_heads, seq_length, dim_per_head) query_states = shape(self.q(hidden_states)) # get key/value states key_states = project( hidden_states, self.k, key_value_states, past_key_value[ 0] if past_key_value is not None else None ) value_states = project( hidden_states, self.v, key_value_states, past_key_value[ 1] if past_key_value is not None else None ) # compute scores scores = torch.matmul( query_states, key_states.transpose(3, 2) ) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 #### NEW CODE #### if not self.has_absolute_position_embeddings: #### NEW CODE #### if position_bias is None: if not self.has_relative_attention_bias: position_bias = torch.zeros( (1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype ) if self.gradient_checkpointing and self.training: position_bias.requires_grad = True else: position_bias = self.compute_bias( real_seq_length, key_length, device=scores.device) # if key and values are already calculated # we want only the last query position bias if past_key_value is not None: position_bias = position_bias[:, :, -hidden_states.size(1):, :] if mask is not None: # (batch_size, n_heads, seq_length, key_length) position_bias = position_bias + mask if self.pruned_heads: mask = torch.ones(position_bias.shape[1]) mask[list(self.pruned_heads)] = 0 position_bias_masked = position_bias[:, mask.bool()] else: position_bias_masked = position_bias scores = scores + position_bias_masked #### NEW CODE #### # If there is no position bias, add attention mask to scores directly elif mask is not None: scores = scores + mask #### NEW CODE #### # Log scores to return for loss calculation scores_to_return = scores #### NEW CODE #### # Apply the mask from the delete gate if delete_gate_mask is not None: scores = scores + delete_gate_mask.squeeze(-1).unsqueeze(-2).unsqueeze(-2) if self.use_softmax1: attn_weights = softmax1(scores.float(), dim=-1).type_as( scores) else: attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as( scores ) # (batch_size, n_heads, seq_length, key_length) #### NEW CODE #### attn_weights = nn.functional.dropout( attn_weights, p=self.dropout, training=self.training ) # (batch_size, n_heads, seq_length, key_length) # Mask heads if we want to if layer_head_mask is not None: attn_weights = attn_weights * layer_head_mask # (batch_size, seq_length, dim) attn_output = unshape(torch.matmul(attn_weights, value_states)) attn_output = self.o(attn_output) present_key_value_state = (key_states, value_states) if ( self.is_decoder and use_cache) else None outputs = (attn_output,) + \ (present_key_value_state,) + (position_bias,) if output_attentions: attentions_keys_queries = (attn_weights, key_states, query_states, value_states, scores_to_return) outputs = outputs + (attentions_keys_queries,) return outputs class MrT5LayerSelfAttention(nn.Module): """ Modified version of T5LayerSelfAttention that uses MrT5Attention instead of T5Attention. """ def __init__(self, config, has_relative_attention_bias=False): super().__init__() #### NEW CODE #### # Use MrT5Attention instead of T5Attention self.SelfAttention = MrT5Attention( config, has_relative_attention_bias=has_relative_attention_bias) #### NEW CODE #### self.layer_norm = T5LayerNorm( config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward( self, hidden_states, attention_mask=None, position_bias=None, layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False, #### NEW CODE #### delete_gate_mask=None, #### NEW CODE #### ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.SelfAttention( normed_hidden_states, mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, #### NEW CODE #### delete_gate_mask=delete_gate_mask, #### NEW CODE #### ) hidden_states = hidden_states + self.dropout(attention_output[0]) # add attentions if we output them outputs = (hidden_states,) + attention_output[1:] return outputs class MrT5LayerCrossAttention(nn.Module): """ Modified version of T5LayerCrossAttention that uses MrT5Attention instead of T5Attention. """ def __init__(self, config): super().__init__() #### NEW CODE #### # Use MrT5Attention instead of T5Attention self.EncDecAttention = MrT5Attention( config, has_relative_attention_bias=False) #### NEW CODE #### self.layer_norm = T5LayerNorm( config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward( self, hidden_states, key_value_states, attention_mask=None, position_bias=None, layer_head_mask=None, past_key_value=None, use_cache=False, query_length=None, output_attentions=False, #### NEW CODE #### delete_gate_mask=None, #### NEW CODE #### ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.EncDecAttention( normed_hidden_states, mask=attention_mask, key_value_states=key_value_states, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, query_length=query_length, output_attentions=output_attentions, #### NEW CODE #### delete_gate_mask=delete_gate_mask, #### NEW CODE #### ) layer_output = hidden_states + self.dropout(attention_output[0]) # add attentions if we output them outputs = (layer_output,) + attention_output[1:] return outputs class MrT5Block(nn.Module): """ Modified version of T5Block that uses MrT5LayerSelfAttention and MrT5LayerCrossAttention instead of T5LayerSelfAttention and T5LayerCrossAttention. """ def __init__(self, config, has_relative_attention_bias=False, #### NEW CODE #### has_delete_gate=False, #### NEW CODE #### ): super().__init__() self.is_decoder = config.is_decoder self.layer = nn.ModuleList() #### NEW CODE #### # Use MrT5LayerSelfAttention and MrT5LayerCrossAttention # instead of T5LayerSelfAttention and T5LayerCrossAttention self.layer.append(MrT5LayerSelfAttention( config, has_relative_attention_bias=has_relative_attention_bias)) if self.is_decoder: self.layer.append(MrT5LayerCrossAttention(config)) #### NEW CODE #### self.layer.append(T5LayerFF(config)) #### NEW CODE #### # Add delete gate if needed self.has_delete_gate = has_delete_gate if self.has_delete_gate: if config.deletion_type == "scaled_sigmoid": self.delete_gate = SigmoidDeleteGate(config) elif config.deletion_type == "log_sigmoid": self.delete_gate = LogSigmoidDeleteGate(config) elif config.deletion_type == "random": self.delete_gate = RandomDeleteGate(config) elif config.deletion_type == "fixed": self.delete_gate = FixedDeleteGate(config) else: raise ValueError( f"Invalid deletion type: {config.deletion_type}") # Set hard_delete flags self.sigmoid_mask_scale = config.sigmoid_mask_scale self.deletion_threshold = config.deletion_threshold #### NEW CODE #### #### NEW CODE #### def __get_new_positions_and_mask(self, batch_size, seq_len, delete_gate_mask, deletion_threshold, device): delete_gate_mask = delete_gate_mask.squeeze(-1) # Create filter from delete gate mask deletion_threshold = deletion_threshold if deletion_threshold is not None else self.deletion_threshold keep_this = delete_gate_mask > deletion_threshold # Calculate the target position for each token target_pos = torch.cumsum(keep_this, dim=1) - 1 new_len = target_pos[:, -1].max().item() + 1 # Clamp the target position to avoid out of bounds when deleting everything target_pos = target_pos.clamp(min=0) # Map the positions to the src side. Do this in int32, because it's faster and we will not have sequences # longer than 2^31 positions = torch.arange(seq_len, device=device, dtype=torch.int32).repeat(batch_size, 1) positions *= keep_this.int() src_side_pos = torch.zeros(batch_size, new_len, device=device, dtype=torch.int32) src_side_pos.scatter_add_(1, target_pos, positions) # Create the new mask new_mask = torch.arange(new_len, device=device).expand(batch_size, -1) <= target_pos[:, -1:] new_mask = (~new_mask).float() * -1e9 new_mask = new_mask.unsqueeze(-1) return src_side_pos.long(), new_mask def __hard_delete_hidden_states(self, hidden_states, positions): new_hidden_states = torch.gather(hidden_states, 1, positions.unsqueeze(2).expand(-1, -1, hidden_states.size(2))) return new_hidden_states def __hard_delete_4_dimensions(self, position_bias, positions): new_position_bias = torch.gather(position_bias, 1, positions.unsqueeze(2).unsqueeze(3).expand(-1, -1, position_bias.size(2), position_bias.size(3))) return new_position_bias #### NEW CODE #### def forward( self, hidden_states, attention_mask=None, position_bias=None, encoder_hidden_states=None, encoder_attention_mask=None, encoder_decoder_position_bias=None, layer_head_mask=None, cross_attn_layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False, return_dict=True, #### NEW CODE #### delete_gate_mask=None, input_ids=None, hard_delete=None, deletion_threshold=None, #### NEW CODE #### ): if past_key_value is not None: if not self.is_decoder: logger.warning( "`past_key_values` is passed to the encoder. Please make sure this is intended.") expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 if len(past_key_value) != expected_num_past_key_values: raise ValueError( f"There should be {expected_num_past_key_values} past states. " f"{'2 (key / value) for cross attention. ' if expected_num_past_key_values == 4 else ''}" f"Got {len(past_key_value)} past key / value states" ) self_attn_past_key_value = past_key_value[:2] cross_attn_past_key_value = past_key_value[2:] else: self_attn_past_key_value, cross_attn_past_key_value = None, None ##### NEW CODE ##### # Initialize delete gate values and logits for logging/loss calculation delete_gate_values = None delete_gate_logits = None if self.has_delete_gate: delete_gate_values, delete_gate_logits = self.delete_gate( hidden_states, input_ids) delete_gate_mask = delete_gate_values # Raise error if all tokens are deleted in any sequence in batch if (delete_gate_values < self.deletion_threshold).all(): raise ValueError("All tokens are deleted in this batch. " + \ "Please adjust the deletion rate or " + \ "alpha hyperparameter.") # Apply hard deletion if hard_delete: # Compute new token positions new_positions, delete_gate_mask = self.__get_new_positions_and_mask( hidden_states.size(0), hidden_states.size(1), delete_gate_mask, deletion_threshold, hidden_states.device) # Compute new position bias if position_bias is not None: new_position_bias = self.__hard_delete_4_dimensions( position_bias.permute(0, 2, 3, 1), new_positions) new_position_bias = self.__hard_delete_4_dimensions( new_position_bias.permute(0, 2, 1, 3), new_positions) position_bias = new_position_bias.permute(0, 3, 2, 1) # Compute new attention mask new_attention_mask = self.__hard_delete_4_dimensions( attention_mask.permute(0, 3, 1, 2), new_positions) attention_mask = new_attention_mask.permute(0, 2, 3, 1) # Compute new hidden states and delete gate mask hidden_states = self.__hard_delete_hidden_states( hidden_states, new_positions) ##### NEW CODE ##### self_attention_outputs = self.layer[0]( hidden_states, attention_mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=self_attn_past_key_value, use_cache=use_cache, output_attentions=output_attentions, #### NEW CODE #### # Only apply delete_gate_mask to self-attention if the block # is the encoder delete_gate_mask=None if self.is_decoder else delete_gate_mask, #### NEW CODE #### ) hidden_states, present_key_value_state = self_attention_outputs[:2] # Keep self-attention outputs and relative position weights attention_outputs = self_attention_outputs[2:] # clamp inf values to enable fp16 training if hidden_states.dtype == torch.float16: clamp_value = torch.where( torch.isinf(hidden_states).any(), torch.finfo(hidden_states.dtype).max - 1000, torch.finfo(hidden_states.dtype).max, ) hidden_states = torch.clamp( hidden_states, min=-clamp_value, max=clamp_value) do_cross_attention = self.is_decoder and encoder_hidden_states is not None if do_cross_attention: # the actual query length is unknown for cross attention # if using past key value states. Need to inject it here if present_key_value_state is not None: query_length = present_key_value_state[0].shape[2] else: query_length = None cross_attention_outputs = self.layer[1]( hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, position_bias=encoder_decoder_position_bias, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, query_length=query_length, use_cache=use_cache, output_attentions=output_attentions, #### NEW CODE #### delete_gate_mask=delete_gate_mask, #### NEW CODE #### ) hidden_states = cross_attention_outputs[0] # clamp inf values to enable fp16 training if hidden_states.dtype == torch.float16: clamp_value = torch.where( torch.isinf(hidden_states).any(), torch.finfo(hidden_states.dtype).max - 1000, torch.finfo(hidden_states.dtype).max, ) hidden_states = torch.clamp( hidden_states, min=-clamp_value, max=clamp_value) # Combine self attn and cross attn key value states if present_key_value_state is not None: present_key_value_state = present_key_value_state + \ cross_attention_outputs[1] # Keep cross-attention outputs and relative position weights attention_outputs = attention_outputs + cross_attention_outputs[2:] # Apply Feed Forward layer hidden_states = self.layer[-1](hidden_states) # clamp inf values to enable fp16 training if hidden_states.dtype == torch.float16: clamp_value = torch.where( torch.isinf(hidden_states).any(), torch.finfo(hidden_states.dtype).max - 1000, torch.finfo(hidden_states.dtype).max, ) hidden_states = torch.clamp( hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if use_cache: outputs = outputs + (present_key_value_state,) + attention_outputs else: outputs = outputs + attention_outputs ##### NEW CODE ##### if self.has_delete_gate: outputs = outputs + \ (delete_gate_values, delete_gate_logits, delete_gate_mask, attention_mask) ##### NEW CODE ##### # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights), (delete_gate_mask), (delete_gate_logits) return outputs class MrT5Stack(T5Stack): def __init__(self, config, embed_tokens=None): super().__init__(config, embed_tokens) ##### NEW CODE ##### if self.is_decoder: self.block = nn.ModuleList( [ MrT5Block( config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers) ] ) else: blocks = [] for i in range(config.num_layers): blocks.append( MrT5Block( config, # Only the first layer has relative attention bias has_relative_attention_bias=bool(i == 0), # Add delete gate if specified has_delete_gate=bool(i == config.delete_gate_layer), ) ) self.block = nn.ModuleList(blocks) ##### NEW CODE ##### def forward( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, inputs_embeds=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, #### NEW CODE #### delete_gate_mask=None, delete_gate_output=None, delete_gate_logits=None, hard_delete=None, deletion_threshold=None, #### NEW CODE #### ): # Model parallel if self.model_parallel: torch.cuda.set_device(self.first_device) self.embed_tokens = self.embed_tokens.to(self.first_device) use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: err_msg_prefix = "decoder_" if self.is_decoder else "" raise ValueError( f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" ) elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: err_msg_prefix = "decoder_" if self.is_decoder else "" raise ValueError( f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds") if inputs_embeds is None: if self.embed_tokens is None: raise ValueError( "You have to initialize the model with valid token embeddings") inputs_embeds = self.embed_tokens(input_ids) #### NEW CODE #### if self.absolute_pos_embed is not None: position_ids = torch.arange(input_shape[-1], dtype=torch.long, device=inputs_embeds.device) position_embeds = self.absolute_pos_embed(position_ids) inputs_embeds = inputs_embeds + position_embeds #### NEW CODE #### batch_size, seq_length = input_shape # required mask seq length can be calculated via length of past mask_seq_length = past_key_values[0][0].shape[2] + \ seq_length if past_key_values is not None else seq_length if use_cache is True: if not self.is_decoder: raise ValueError( f"`use_cache` can only be set to `True` if {self} is used as a decoder") # initialize past_key_values with `None` if past does not exist if past_key_values is None: past_key_values = [None] * len(self.block) if attention_mask is None: attention_mask = torch.ones( batch_size, mask_seq_length, device=inputs_embeds.device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask = self.get_extended_attention_mask( attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = ( encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones( encoder_hidden_shape, device=inputs_embeds.device, dtype=torch.long ) encoder_extended_attention_mask = self.invert_attention_mask( encoder_attention_mask) else: encoder_extended_attention_mask = None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False #### NEW CODE #### # Return a new encoder attention mask if hard delete is enabled attention_mask_to_return = None #### NEW CODE #### # Prepare head mask if needed head_mask = self.get_head_mask(head_mask, self.config.num_layers) cross_attn_head_mask = self.get_head_mask( cross_attn_head_mask, self.config.num_layers) present_key_value_states = () if use_cache else None all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if (output_attentions and self.is_decoder) else None position_bias = None encoder_decoder_position_bias = None #### NEW CODE #### all_queries = () if output_attentions else None all_keys = () if output_attentions else None all_values = () if output_attentions else None all_scores = () if output_attentions else None all_cross_attn_queries = () if (output_attentions and self.is_decoder) else None all_cross_attn_keys = () if (output_attentions and self.is_decoder) else None all_cross_attn_values = () if (output_attentions and self.is_decoder) else None all_cross_attn_scores = () if (output_attentions and self.is_decoder) else None #### NEW CODE #### hidden_states = self.dropout(inputs_embeds) for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)): layer_head_mask = head_mask[i] cross_attn_layer_head_mask = cross_attn_head_mask[i] # Model parallel if self.model_parallel: torch.cuda.set_device(hidden_states.device) # Ensure that attention_mask is always on the same device as hidden_states if attention_mask is not None: attention_mask = attention_mask.to(hidden_states.device) if position_bias is not None: position_bias = position_bias.to(hidden_states.device) if encoder_hidden_states is not None: encoder_hidden_states = encoder_hidden_states.to( hidden_states.device) if encoder_extended_attention_mask is not None: encoder_extended_attention_mask = encoder_extended_attention_mask.to( hidden_states.device) if encoder_decoder_position_bias is not None: encoder_decoder_position_bias = encoder_decoder_position_bias.to( hidden_states.device) if layer_head_mask is not None: layer_head_mask = layer_head_mask.to(hidden_states.device) if cross_attn_layer_head_mask is not None: cross_attn_layer_head_mask = cross_attn_layer_head_mask.to( hidden_states.device) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.forward, hidden_states, extended_attention_mask, position_bias, encoder_hidden_states, encoder_extended_attention_mask, encoder_decoder_position_bias, layer_head_mask, cross_attn_layer_head_mask, None, # past_key_value is always None with gradient checkpointing use_cache, output_attentions, #### NEW CODE #### delete_gate_mask, #### NEW CODE #### ) else: layer_outputs = layer_module( hidden_states, attention_mask=extended_attention_mask, position_bias=position_bias, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, encoder_decoder_position_bias=encoder_decoder_position_bias, layer_head_mask=layer_head_mask, cross_attn_layer_head_mask=cross_attn_layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, #### NEW CODE #### delete_gate_mask=delete_gate_mask, input_ids=input_ids, hard_delete=hard_delete, deletion_threshold=deletion_threshold, #### NEW CODE #### ) #### NEW CODE #### # Update delete_gate_mask if the previous layer had a delete gate if layer_module.has_delete_gate: delete_gate_output, delete_gate_logits, delete_gate_mask, new_attention_mask = layer_outputs[-4], layer_outputs[-3], layer_outputs[-2], layer_outputs[-1] # Update resized masks if the previous layer did a hard deletion if hard_delete: extended_attention_mask = new_attention_mask attention_mask_to_return = extended_attention_mask.squeeze(-2).squeeze(-2) attention_mask_to_return = (attention_mask_to_return == 0).int() #### NEW CODE #### # layer_outputs is a tuple with: # hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) if use_cache is False: layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] hidden_states, present_key_value_state = layer_outputs[:2] # We share the position biases between the layers - the first layer store them # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), # (cross-attention position bias), (cross-attention weights) position_bias = layer_outputs[2] if self.is_decoder and encoder_hidden_states is not None: #### NEW CODE #### index = 4 if output_attentions else 3 encoder_decoder_position_bias = layer_outputs[index] #### NEW CODE #### # append next layer key value states if use_cache: present_key_value_states = present_key_value_states + \ (present_key_value_state,) #### NEW CODE #### if output_attentions: attn_weights, keys, queries, values, scores = layer_outputs[3] all_attentions = all_attentions + (attn_weights,) all_queries = all_queries + (queries,) all_keys = all_keys + (keys,) all_values = all_values + (values,) all_scores = all_scores + (scores,) if self.is_decoder: cross_attn_weights, cross_attn_keys, cross_attn_queries, \ cross_attn_values, cross_attn_scores = layer_outputs[5] all_cross_attentions = all_cross_attentions + \ (cross_attn_weights,) all_cross_attn_queries = all_cross_attn_queries + \ (cross_attn_queries,) all_cross_attn_keys = all_cross_attn_keys + \ (cross_attn_keys,) all_cross_attn_values = all_cross_attn_values + \ (cross_attn_values,) all_cross_attn_scores = all_cross_attn_scores + \ (cross_attn_scores,) #### NEW CODE #### # Model Parallel: If it's the last layer for that device, put things on the next device if self.model_parallel: for k, v in self.device_map.items(): if i == v[-1] and "cuda:" + str(k) != self.last_device: hidden_states = hidden_states.to("cuda:" + str(k + 1)) hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, present_key_value_states, all_hidden_states, all_attentions, all_cross_attentions, #### NEW CODE #### delete_gate_mask, delete_gate_output, delete_gate_logits, attention_mask_to_return, all_queries, all_keys, all_values, all_scores, all_cross_attn_queries, all_cross_attn_keys, all_cross_attn_values, all_cross_attn_scores, #### NEW CODE #### ] if v is not None ) return MrT5BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=present_key_value_states, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, #### NEW CODE #### delete_gate_mask=delete_gate_mask, delete_gate_output=delete_gate_output, delete_gate_logits=delete_gate_logits, attention_mask=attention_mask_to_return, attention_queries=all_queries, attention_keys=all_keys, attention_values=all_values, attention_scores=all_scores, cross_attention_queries=all_cross_attn_queries, cross_attention_keys=all_cross_attn_keys, cross_attention_values=all_cross_attn_values, cross_attention_scores=all_cross_attn_scores, #### NEW CODE #### ) class MrT5ForConditionalGeneration(T5ForConditionalGeneration): config_class = MrT5Config def __init__(self, config: MrT5Config): super().__init__(config) #### NEW CODE #### encoder_config = copy.deepcopy(config) encoder_config.is_decoder = False encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = MrT5Stack(encoder_config, self.shared) decoder_config = copy.deepcopy(config) decoder_config.is_decoder = True decoder_config.is_encoder_decoder = False decoder_config.num_layers = config.num_decoder_layers self.decoder = MrT5Stack(decoder_config, self.shared) #### NEW CODE #### def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.FloatTensor] = None, decoder_head_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, #### NEW CODE #### hard_delete: bool = False, deletion_threshold: Optional[float] = None, #### NEW CODE #### ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask if head_mask is not None and decoder_head_mask is None: if self.config.num_layers == self.config.num_decoder_layers: decoder_head_mask = head_mask # Encode if needed (training, first prediction pass) if encoder_outputs is None: # Convert encoder inputs in embeddings if needed encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, #### NEW CODE #### hard_delete=hard_delete, deletion_threshold=deletion_threshold, #### NEW CODE #### ) elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): #### NEW CODE #### encoder_outputs = MrT5BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=encoder_outputs.last_hidden_state, hidden_states=encoder_outputs.hidden_states if 'hidden_states' in encoder_outputs else None, attentions=encoder_outputs.attentions if 'attentions' in encoder_outputs else None, delete_gate_mask=encoder_outputs.delete_gate_mask if 'delete_gate_mask' in encoder_outputs else None, ) #### NEW CODE #### #### NEW CODE #### hidden_states = encoder_outputs.last_hidden_state attention_mask = encoder_outputs.attention_mask if 'attention_mask' in encoder_outputs else attention_mask #### NEW CODE #### if self.model_parallel: torch.cuda.set_device(self.decoder.first_device) if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: # get decoder inputs from shifting lm labels to the right decoder_input_ids = self._shift_right(labels) # Set device for model parallelism if self.model_parallel: torch.cuda.set_device(self.decoder.first_device) hidden_states = hidden_states.to(self.decoder.first_device) if decoder_input_ids is not None: decoder_input_ids = decoder_input_ids.to( self.decoder.first_device) if attention_mask is not None: attention_mask = attention_mask.to(self.decoder.first_device) if decoder_attention_mask is not None: decoder_attention_mask = decoder_attention_mask.to( self.decoder.first_device) # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, inputs_embeds=decoder_inputs_embeds, past_key_values=past_key_values, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, #### NEW CODE #### delete_gate_mask=encoder_outputs.delete_gate_mask, #### NEW CODE #### ) sequence_output = decoder_outputs[0] # Set device for model parallelism if self.model_parallel: torch.cuda.set_device(self.encoder.first_device) self.lm_head = self.lm_head.to(self.encoder.first_device) sequence_output = sequence_output.to(self.lm_head.weight.device) if self.config.tie_word_embeddings: # Rescale output before projecting on vocab # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 sequence_output = sequence_output * (self.model_dim**-0.5) lm_logits = self.lm_head(sequence_output) loss = None if labels is not None: loss_fct = nn.CrossEntropyLoss(ignore_index=-100) # move labels to correct device to enable PP labels = labels.to(lm_logits.device) loss = loss_fct( lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) # TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666 if not return_dict: output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs return ((loss,) + output) if loss is not None else output ##### NEW CODE ##### return MrT5Seq2SeqLMOutput( loss=loss, logits=lm_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, delete_gate_mask=encoder_outputs.delete_gate_mask, delete_gate_output=encoder_outputs.delete_gate_output, delete_gate_logits=encoder_outputs.delete_gate_logits, encoder_keys=encoder_outputs.attention_keys, encoder_queries=encoder_outputs.attention_queries, encoder_values=encoder_outputs.attention_values, encoder_scores=encoder_outputs.attention_scores, decoder_keys=decoder_outputs.attention_keys, decoder_queries=decoder_outputs.attention_queries, decoder_values=decoder_outputs.attention_values, decoder_scores=decoder_outputs.attention_scores, cross_attention_queries=decoder_outputs.cross_attention_queries, cross_attention_keys=decoder_outputs.cross_attention_keys, cross_attention_values=decoder_outputs.cross_attention_values, cross_attention_scores=decoder_outputs.cross_attention_scores, ) ##### NEW CODE ##### def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, head_mask=None, decoder_head_mask=None, decoder_attention_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past_key_values is used if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] ##### NEW CODE ##### # TODO: Generation will need special handling of attention masks, which # will need to be resized if hard delete is enabled. For now, we will # simply omit the encoder attention mask for generation. attention_mask = None ##### NEW CODE ##### return { "decoder_input_ids": input_ids, "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "decoder_attention_mask": decoder_attention_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, }