File size: 1,632 Bytes
c1dfcc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c80eac7
c1dfcc3
 
 
 
c80eac7
c1dfcc3
 
c80eac7
 
 
 
 
 
 
c1dfcc3
c80eac7
 
c1dfcc3
c80eac7
c1dfcc3
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from diffusers import StableDiffusion3Pipeline
import torch
from PIL import Image
import os
import json
import argparse

parser = argparse.ArgumentParser(description="Diffusion Pipeline with Arguments")

parser.add_argument(
    "--json_filename",
    type=str,
    required=True,
    help="Path to the JSON file containing text data",
)
parser.add_argument(
    "--cuda", type=int, required=True, help="CUDA device to use for processing"
)

args = parser.parse_args()
json_filename = args.json_filename
cuda_device = f"cuda:{args.cuda}"
print(json_filename, cuda_device)

image_dir = "/mnt/petrelfs/zhuchenglin/LLaVA/playground/data"
with open(json_filename, "r") as f:
    json_data = json.load(f)
    
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16)
pipe.to(cuda_device)

for text in json_data:
    prompt = ""
    for caption in text['conversations']:
        if caption['from'] == 'gpt':
            prompt += caption['value']
    # for caption in text['conversations']:
    #     prompt += caption['value']
    
    image = pipe(
        prompt=prompt,
        prompt_3=prompt,
        negative_prompt="",
        num_inference_steps=60,
        height=1024,
        width=1024,
        guidance_scale=10.0,
        max_sequence_length=512,
    ).images[0]

    subdir = text["image"].split("/")[0]
    if not os.path.exists(os.path.join(image_dir, subdir)):
        os.makedirs(os.path.join(image_dir, subdir))
    image_path = os.path.join(image_dir, text["image"])
    image.save(image_path)
    
print("所有图像已成功生成并保存。")