--- license: gemma library_name: peft tags: - generated_from_trainer base_model: google/paligemma-3b-pt-224 datasets: - vq_av2 model-index: - name: paligemma-vqa results: [] --- # paligemma-vqa This model is a fine-tuned version of [google/paligemma-3b-pt-224](https://huggingface.co/google/paligemma-3b-pt-224) on the vq_av2 dataset. It achieves the following results on the evaluation set: - Loss: 0.5071 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5618 | 0.5886 | 1000 | 0.5531 | | 0.5268 | 1.1772 | 2000 | 0.5335 | | 0.5099 | 1.7657 | 3000 | 0.5071 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.2.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1