staycoolish
commited on
Commit
•
f510c16
1
Parent(s):
cd802ee
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1858.16 +/- 188.56
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4c12a471dab7bc10a164fcd4f3c08e3a695b20cc291291c732fd1d68a254ca3
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f0025549ca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0025549d30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0025549dc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0025549e50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f0025549ee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f0025549f70>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f002554d040>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f002554d0d0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f002554d160>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f002554d1f0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f002554d280>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f002554d310>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f0025545720>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1678127442336855890,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMZdiD/Cefm+Y7WFPg8w8D98v+6/BWicvw8tkb/Cvd6/jx+PP8JkkruwsWI+P+ffv1Aikb+AlYI/LXQHP1Aefj9u07O/cptsP62dFT/ny8G5KopZv9gazTuga3k8AOiSP3Lnmr+sT54+THcePym0eL/U6Ic/8EABvnyn9j7DRcM/VE/Bvx/jGL7fPYi/Uwo3vy5EeD8USF2/5wawPso2ob+h2cG/O3+mPcpUoLyp8pQ/h2aUvzCyc7/9Dha/1nYhv0KeLb9ongy/ghl8PyOa0T+PiVM/rE+ePkx3Hj8ptHi/Im+5P+LtHD5VXxM/cxYcQG3R4L/kbv29/c1Cv0m9jr+TtpA/Yk0BvlSd+D8Fx8k9VP7CvxZB7rzyzOG+kIwPP3wpsb/sif2/6F48vrsBqD8yclm/VZLhv6BGrb7I5SHAj4lTP6xPnj5Mdx4/KbR4v+YxtT038w0/FQAaP4HUGj/8njm+V3sXvn+c8z2OrGM/cjeOP7DAob3l1Qg9uvXwPQ1Ogb+Alce/UfKNvkfQOT4983I+sEh7vziiKr9cnoc+x/RZv7Or4jzBtIC+M0gmv4+JUz8T/E7ATHcePym0eL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABBwmQ1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAstMIvgAAAAByT/e/AAAAAMaHnr0AAAAAkTP5PwAAAADR25c9AAAAAGTQ3j8AAAAACwvGPQAAAAAWHey/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAy4eANgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPq6CL4AAAAASaDmvwAAAABOJt89AAAAAGLh7D8AAAAAEK+8vAAAAAADmvM/AAAAAGLffz0AAAAAan78vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFJQSjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA5FqA8AAAAAMwg5r8AAAAA9UYEPgAAAADns9w/AAAAAIdSi70AAAAA1FfrPwAAAADv96+9AAAAADQI/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkuD41AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcn7KPQAAAABjRPW/AAAAAFPj5z0AAAAAvQXmPwAAAAB5DOA9AAAAAIBX5D8AAAAAxTK+PQAAAAAZXv2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJm76qWC2+iMAWyUTegDjAF0lEdAsGw1LwnYx3V9lChoBkdAmWQ3446wMmgHTegDaAhHQLBuNdYnv2J1fZQoaAZHQJs3npcHGCJoB03oA2gIR0CwbpUBGQS0dX2UKGgGR0CYxSo2XLNfaAdN6ANoCEdAsG/y6BiCrnV9lChoBkdAnXJlHBk7OmgHTegDaAhHQLBziCW/rSp1fZQoaAZHQJ1hXQjUuthoB03oA2gIR0CwdZclXzUadX2UKGgGR0Cc/yAD7qIKaAdN6ANoCEdAsHYiCL/CInV9lChoBkdAnt0BZlnRLWgHTegDaAhHQLB4L8gpz911fZQoaAZHQJoUqQwK0D5oB03oA2gIR0CwfO09dNWVdX2UKGgGR0CbsmITXarWaAdN6ANoCEdAsH7lBBzFM3V9lChoBkdAm6bal54W12gHTegDaAhHQLB/QHuZ1FJ1fZQoaAZHQJZuOT2WY4RoB03oA2gIR0CwgI7tAs06dX2UKGgGR0CbvLsasIVuaAdN6ANoCEdAsIQP4VRDTnV9lChoBkdAmUmIgA6uGWgHTegDaAhHQLCGkAh0Qsh1fZQoaAZHQJxyYhje9BdoB03oA2gIR0CwhxwNsnAqdX2UKGgGR0CcmyV6u4gBaAdN6ANoCEdAsIlaIuXeFnV9lChoBkdAl9fwbp/wzGgHTegDaAhHQLCNm5wOvuB1fZQoaAZHQJmaHOAy2x9oB03oA2gIR0Cwj5s8kleGdX2UKGgGR0CVzC3iaRZEaAdN6ANoCEdAsI/00YTCcnV9lChoBkdAmfCRPwd8zGgHTegDaAhHQLCRQKu0TlF1fZQoaAZHQJvcal41P31oB03oA2gIR0CwlNBeb/fgdX2UKGgGR0CdQ5hUzbeuaAdN6ANoCEdAsJfho+Ofd3V9lChoBkdAnFNUoBq9G2gHTegDaAhHQLCYehwEQoV1fZQoaAZHQJ4vaR1X/5toB03oA2gIR0CwmrohIOH4dX2UKGgGR0CYRAO8kD6naAdN6ANoCEdAsJ5dhUipvXV9lChoBkdAlMAT3mFJx2gHTegDaAhHQLCgVdfb9Ih1fZQoaAZHQJyPB+PRzBBoB03oA2gIR0CwoLAUtZmqdX2UKGgGR0Cb3ylKsdT6aAdN6ANoCEdAsKIGX5WRzXV9lChoBkdAnp0z2OAAhmgHTegDaAhHQLCl7fpUxVR1fZQoaAZHQJ6FaGEf1YhoB03oA2gIR0CwqSC31BdEdX2UKGgGR0CZ5j9MK1G9aAdN6ANoCEdAsKm3zErGznV9lChoBkdAnnJ633Hq/2gHTegDaAhHQLCrhVf/m1Z1fZQoaAZHQJxESykbgj1oB03oA2gIR0CwrwjibUgCdX2UKGgGR0CdgrNB4UvgaAdN6ANoCEdAsLD/EHdGiHV9lChoBkdAnFAEehf0E2gHTegDaAhHQLCxXIFvAGl1fZQoaAZHQJ7zWZnctXhoB03oA2gIR0Cwsq4RmK64dX2UKGgGR0CZ0Nm0mdAgaAdN6ANoCEdAsLcTpKSPl3V9lChoBkdAmQJEtI0652gHTegDaAhHQLC6We8PFvR1fZQoaAZHQJwOZkOI68xoB03oA2gIR0Cwut8Jlar4dX2UKGgGR0CZpr3G4qgAaAdN6ANoCEdAsLwp/4Irv3V9lChoBkdAma7xegL7XWgHTegDaAhHQLC/rQDV6NV1fZQoaAZHQJ0oQbwSamZoB03oA2gIR0Cwwa+y/sVtdX2UKGgGR0CbXrfdAPd3aAdN6ANoCEdAsMIM0Ltu1nV9lChoBkdAnQRLB0p3HWgHTegDaAhHQLDDXMSsbNt1fZQoaAZHQJHgC+yquKZoB03oA2gIR0CwyDb5M10ldX2UKGgGR0CZwiaSs8xLaAdN6ANoCEdAsMsWlhw2l3V9lChoBkdAmjiwAdXDFmgHTegDaAhHQLDLbkbPyCp1fZQoaAZHQJcDhfD1oQFoB03oA2gIR0CwzL2XTmW/dX2UKGgGR0CXc1TpgTh6aAdN6ANoCEdAsNBOLjxTbXV9lChoBkdAmEggtWdVemgHTegDaAhHQLDSXZwGW2R1fZQoaAZHQJezLTjNpudoB03oA2gIR0Cw0rvIXCTEdX2UKGgGR0CYs/J2MbWFaAdN6ANoCEdAsNQUMAmzB3V9lChoBkdAk7I+rU9ZBGgHTegDaAhHQLDZiC/XXiB1fZQoaAZHQJa2tO/L1VZoB03oA2gIR0Cw28Vf/m1ZdX2UKGgGR0CYVrOi35N5aAdN6ANoCEdAsNwdTOxB3XV9lChoBkdAmTKoXO4XoGgHTegDaAhHQLDdbM5OrQx1fZQoaAZHQJi6XQla8pVoB03oA2gIR0Cw4Pfjn3cpdX2UKGgGR0CaPtLAYYR/aAdN6ANoCEdAsOLpirksBnV9lChoBkdAm8LyPp6hQGgHTegDaAhHQLDjRBGhEjR1fZQoaAZHQJhk62NNrTJoB03oA2gIR0Cw5NE0rK/3dX2UKGgGR0CUMPHoouwpaAdN6ANoCEdAsOpeeOGTLXV9lChoBkdAmWbnhS9/SmgHTegDaAhHQLDsVcNH6M11fZQoaAZHQJiv4QOFxn5oB03oA2gIR0Cw7K7b5/LDdX2UKGgGR0CZOXHQyAQQaAdN6ANoCEdAsO4FFZxJd3V9lChoBkdAm3hoqoZQ52gHTegDaAhHQLDxnVW0Z3t1fZQoaAZHQJYrNF/hESdoB03oA2gIR0Cw85tC7btadX2UKGgGR0CdJlmhM8HOaAdN6ANoCEdAsPP22F36h3V9lChoBkdAmo8ANPP9k2gHTegDaAhHQLD16jAzpHJ1fZQoaAZHQJrOjcrRSgpoB03oA2gIR0Cw+v486mwadX2UKGgGR0CavKmyxA0LaAdN6ANoCEdAsPz14keIVXV9lChoBkdAmT/DQmeDnWgHTegDaAhHQLD9UetjkMl1fZQoaAZHQJdKokC3gDRoB03oA2gIR0Cw/qYIF/x2dX2UKGgGR0CFZPqsU7CBaAdN6ANoCEdAsQJN9nbqQnV9lChoBkdAlgLGCROk+GgHTegDaAhHQLEEg6jWTX91fZQoaAZHQJixmxLTQVtoB03oA2gIR0CxBQvhIe5ndX2UKGgGR0CWMSwxnFo+aAdN6ANoCEdAsQckvqTr3XV9lChoBkdAm+NmrCFbmmgHTegDaAhHQLELvRmK64F1fZQoaAZHQJyAmv1UVBVoB03oA2gIR0CxDbSF49owdX2UKGgGR0CXD1+o99tuaAdN6ANoCEdAsQ4Vn5BToHV9lChoBkdAlkUg8OkLyGgHTegDaAhHQLEPdHPeHi51fZQoaAZHQJqdWhf0EoxoB03oA2gIR0CxEwtCzC1rdX2UKGgGR0CZ9giMo+fRaAdN6ANoCEdAsRXXzlLeynV9lChoBkdAlpH7BGhEjWgHTegDaAhHQLEWgn+yZ8d1fZQoaAZHQJvi2Dg62fFoB03oA2gIR0CxGMxDw6QvdX2UKGgGR0CY6a9FnZkDaAdN6ANoCEdAsR7aZDzAe3V9lChoBkdAlMdqrNnoPmgHTegDaAhHQLEg2FINEw51fZQoaAZHQJWEsGt6ol5oB03oA2gIR0CxITPjS5RTdX2UKGgGR0CbxWrp7kXDaAdN6ANoCEdAsSJ/fBN21XV9lChoBkdAlUKwZKnNxGgHTegDaAhHQLEmG96C17Z1fZQoaAZHQJeOyzru6VdoB03oA2gIR0CxKECsjmjkdX2UKGgGR0CW1f/i5uqFaAdN6ANoCEdAsSjWnjyWiXV9lChoBkdAlOn/JV81GmgHTegDaAhHQLEq9PyTY/V1fZQoaAZHQJmKvEk0JnhoB03oA2gIR0CxL8URSP2gdX2UKGgGR0CTSt6DGtITaAdN6ANoCEdAsTHYQTVUdnV9lChoBkdAmLK+tOmBOGgHTegDaAhHQLEyOOlO45N1fZQoaAZHQJgc21OTJQtoB03oA2gIR0CxM5UdV/+bdX2UKGgGR0Cd4n+XJHRUaAdN6ANoCEdAsTc1TrE9+3V9lChoBkdAnDaRsqJ/G2gHTegDaAhHQLE55G+K0lZ1fZQoaAZHQJXp1cv/R3NoB03oA2gIR0CxOneenQ6ZdX2UKGgGR0CV9q1YyO7yaAdN6ANoCEdAsTykKw6hg3VlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82493bb30a156fbfd60a96ceb64ee0990fd299418ac20bccb7a57f61cebeb93e
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7081b9701c5d291066c6055abc33f2ffbbc84cd475713f75dadd0d4455cae53a
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0025549ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0025549d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0025549dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0025549e50>", "_build": "<function ActorCriticPolicy._build at 0x7f0025549ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0025549f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f002554d040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f002554d0d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f002554d160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f002554d1f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f002554d280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f002554d310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0025545720>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678127442336855890, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMZdiD/Cefm+Y7WFPg8w8D98v+6/BWicvw8tkb/Cvd6/jx+PP8JkkruwsWI+P+ffv1Aikb+AlYI/LXQHP1Aefj9u07O/cptsP62dFT/ny8G5KopZv9gazTuga3k8AOiSP3Lnmr+sT54+THcePym0eL/U6Ic/8EABvnyn9j7DRcM/VE/Bvx/jGL7fPYi/Uwo3vy5EeD8USF2/5wawPso2ob+h2cG/O3+mPcpUoLyp8pQ/h2aUvzCyc7/9Dha/1nYhv0KeLb9ongy/ghl8PyOa0T+PiVM/rE+ePkx3Hj8ptHi/Im+5P+LtHD5VXxM/cxYcQG3R4L/kbv29/c1Cv0m9jr+TtpA/Yk0BvlSd+D8Fx8k9VP7CvxZB7rzyzOG+kIwPP3wpsb/sif2/6F48vrsBqD8yclm/VZLhv6BGrb7I5SHAj4lTP6xPnj5Mdx4/KbR4v+YxtT038w0/FQAaP4HUGj/8njm+V3sXvn+c8z2OrGM/cjeOP7DAob3l1Qg9uvXwPQ1Ogb+Alce/UfKNvkfQOT4983I+sEh7vziiKr9cnoc+x/RZv7Or4jzBtIC+M0gmv4+JUz8T/E7ATHcePym0eL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABBwmQ1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAstMIvgAAAAByT/e/AAAAAMaHnr0AAAAAkTP5PwAAAADR25c9AAAAAGTQ3j8AAAAACwvGPQAAAAAWHey/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAy4eANgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPq6CL4AAAAASaDmvwAAAABOJt89AAAAAGLh7D8AAAAAEK+8vAAAAAADmvM/AAAAAGLffz0AAAAAan78vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFJQSjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA5FqA8AAAAAMwg5r8AAAAA9UYEPgAAAADns9w/AAAAAIdSi70AAAAA1FfrPwAAAADv96+9AAAAADQI/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkuD41AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcn7KPQAAAABjRPW/AAAAAFPj5z0AAAAAvQXmPwAAAAB5DOA9AAAAAIBX5D8AAAAAxTK+PQAAAAAZXv2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJm76qWC2+iMAWyUTegDjAF0lEdAsGw1LwnYx3V9lChoBkdAmWQ3446wMmgHTegDaAhHQLBuNdYnv2J1fZQoaAZHQJs3npcHGCJoB03oA2gIR0CwbpUBGQS0dX2UKGgGR0CYxSo2XLNfaAdN6ANoCEdAsG/y6BiCrnV9lChoBkdAnXJlHBk7OmgHTegDaAhHQLBziCW/rSp1fZQoaAZHQJ1hXQjUuthoB03oA2gIR0CwdZclXzUadX2UKGgGR0Cc/yAD7qIKaAdN6ANoCEdAsHYiCL/CInV9lChoBkdAnt0BZlnRLWgHTegDaAhHQLB4L8gpz911fZQoaAZHQJoUqQwK0D5oB03oA2gIR0CwfO09dNWVdX2UKGgGR0CbsmITXarWaAdN6ANoCEdAsH7lBBzFM3V9lChoBkdAm6bal54W12gHTegDaAhHQLB/QHuZ1FJ1fZQoaAZHQJZuOT2WY4RoB03oA2gIR0CwgI7tAs06dX2UKGgGR0CbvLsasIVuaAdN6ANoCEdAsIQP4VRDTnV9lChoBkdAmUmIgA6uGWgHTegDaAhHQLCGkAh0Qsh1fZQoaAZHQJxyYhje9BdoB03oA2gIR0CwhxwNsnAqdX2UKGgGR0CcmyV6u4gBaAdN6ANoCEdAsIlaIuXeFnV9lChoBkdAl9fwbp/wzGgHTegDaAhHQLCNm5wOvuB1fZQoaAZHQJmaHOAy2x9oB03oA2gIR0Cwj5s8kleGdX2UKGgGR0CVzC3iaRZEaAdN6ANoCEdAsI/00YTCcnV9lChoBkdAmfCRPwd8zGgHTegDaAhHQLCRQKu0TlF1fZQoaAZHQJvcal41P31oB03oA2gIR0CwlNBeb/fgdX2UKGgGR0CdQ5hUzbeuaAdN6ANoCEdAsJfho+Ofd3V9lChoBkdAnFNUoBq9G2gHTegDaAhHQLCYehwEQoV1fZQoaAZHQJ4vaR1X/5toB03oA2gIR0CwmrohIOH4dX2UKGgGR0CYRAO8kD6naAdN6ANoCEdAsJ5dhUipvXV9lChoBkdAlMAT3mFJx2gHTegDaAhHQLCgVdfb9Ih1fZQoaAZHQJyPB+PRzBBoB03oA2gIR0CwoLAUtZmqdX2UKGgGR0Cb3ylKsdT6aAdN6ANoCEdAsKIGX5WRzXV9lChoBkdAnp0z2OAAhmgHTegDaAhHQLCl7fpUxVR1fZQoaAZHQJ6FaGEf1YhoB03oA2gIR0CwqSC31BdEdX2UKGgGR0CZ5j9MK1G9aAdN6ANoCEdAsKm3zErGznV9lChoBkdAnnJ633Hq/2gHTegDaAhHQLCrhVf/m1Z1fZQoaAZHQJxESykbgj1oB03oA2gIR0CwrwjibUgCdX2UKGgGR0CdgrNB4UvgaAdN6ANoCEdAsLD/EHdGiHV9lChoBkdAnFAEehf0E2gHTegDaAhHQLCxXIFvAGl1fZQoaAZHQJ7zWZnctXhoB03oA2gIR0Cwsq4RmK64dX2UKGgGR0CZ0Nm0mdAgaAdN6ANoCEdAsLcTpKSPl3V9lChoBkdAmQJEtI0652gHTegDaAhHQLC6We8PFvR1fZQoaAZHQJwOZkOI68xoB03oA2gIR0Cwut8Jlar4dX2UKGgGR0CZpr3G4qgAaAdN6ANoCEdAsLwp/4Irv3V9lChoBkdAma7xegL7XWgHTegDaAhHQLC/rQDV6NV1fZQoaAZHQJ0oQbwSamZoB03oA2gIR0Cwwa+y/sVtdX2UKGgGR0CbXrfdAPd3aAdN6ANoCEdAsMIM0Ltu1nV9lChoBkdAnQRLB0p3HWgHTegDaAhHQLDDXMSsbNt1fZQoaAZHQJHgC+yquKZoB03oA2gIR0CwyDb5M10ldX2UKGgGR0CZwiaSs8xLaAdN6ANoCEdAsMsWlhw2l3V9lChoBkdAmjiwAdXDFmgHTegDaAhHQLDLbkbPyCp1fZQoaAZHQJcDhfD1oQFoB03oA2gIR0CwzL2XTmW/dX2UKGgGR0CXc1TpgTh6aAdN6ANoCEdAsNBOLjxTbXV9lChoBkdAmEggtWdVemgHTegDaAhHQLDSXZwGW2R1fZQoaAZHQJezLTjNpudoB03oA2gIR0Cw0rvIXCTEdX2UKGgGR0CYs/J2MbWFaAdN6ANoCEdAsNQUMAmzB3V9lChoBkdAk7I+rU9ZBGgHTegDaAhHQLDZiC/XXiB1fZQoaAZHQJa2tO/L1VZoB03oA2gIR0Cw28Vf/m1ZdX2UKGgGR0CYVrOi35N5aAdN6ANoCEdAsNwdTOxB3XV9lChoBkdAmTKoXO4XoGgHTegDaAhHQLDdbM5OrQx1fZQoaAZHQJi6XQla8pVoB03oA2gIR0Cw4Pfjn3cpdX2UKGgGR0CaPtLAYYR/aAdN6ANoCEdAsOLpirksBnV9lChoBkdAm8LyPp6hQGgHTegDaAhHQLDjRBGhEjR1fZQoaAZHQJhk62NNrTJoB03oA2gIR0Cw5NE0rK/3dX2UKGgGR0CUMPHoouwpaAdN6ANoCEdAsOpeeOGTLXV9lChoBkdAmWbnhS9/SmgHTegDaAhHQLDsVcNH6M11fZQoaAZHQJiv4QOFxn5oB03oA2gIR0Cw7K7b5/LDdX2UKGgGR0CZOXHQyAQQaAdN6ANoCEdAsO4FFZxJd3V9lChoBkdAm3hoqoZQ52gHTegDaAhHQLDxnVW0Z3t1fZQoaAZHQJYrNF/hESdoB03oA2gIR0Cw85tC7btadX2UKGgGR0CdJlmhM8HOaAdN6ANoCEdAsPP22F36h3V9lChoBkdAmo8ANPP9k2gHTegDaAhHQLD16jAzpHJ1fZQoaAZHQJrOjcrRSgpoB03oA2gIR0Cw+v486mwadX2UKGgGR0CavKmyxA0LaAdN6ANoCEdAsPz14keIVXV9lChoBkdAmT/DQmeDnWgHTegDaAhHQLD9UetjkMl1fZQoaAZHQJdKokC3gDRoB03oA2gIR0Cw/qYIF/x2dX2UKGgGR0CFZPqsU7CBaAdN6ANoCEdAsQJN9nbqQnV9lChoBkdAlgLGCROk+GgHTegDaAhHQLEEg6jWTX91fZQoaAZHQJixmxLTQVtoB03oA2gIR0CxBQvhIe5ndX2UKGgGR0CWMSwxnFo+aAdN6ANoCEdAsQckvqTr3XV9lChoBkdAm+NmrCFbmmgHTegDaAhHQLELvRmK64F1fZQoaAZHQJyAmv1UVBVoB03oA2gIR0CxDbSF49owdX2UKGgGR0CXD1+o99tuaAdN6ANoCEdAsQ4Vn5BToHV9lChoBkdAlkUg8OkLyGgHTegDaAhHQLEPdHPeHi51fZQoaAZHQJqdWhf0EoxoB03oA2gIR0CxEwtCzC1rdX2UKGgGR0CZ9giMo+fRaAdN6ANoCEdAsRXXzlLeynV9lChoBkdAlpH7BGhEjWgHTegDaAhHQLEWgn+yZ8d1fZQoaAZHQJvi2Dg62fFoB03oA2gIR0CxGMxDw6QvdX2UKGgGR0CY6a9FnZkDaAdN6ANoCEdAsR7aZDzAe3V9lChoBkdAlMdqrNnoPmgHTegDaAhHQLEg2FINEw51fZQoaAZHQJWEsGt6ol5oB03oA2gIR0CxITPjS5RTdX2UKGgGR0CbxWrp7kXDaAdN6ANoCEdAsSJ/fBN21XV9lChoBkdAlUKwZKnNxGgHTegDaAhHQLEmG96C17Z1fZQoaAZHQJeOyzru6VdoB03oA2gIR0CxKECsjmjkdX2UKGgGR0CW1f/i5uqFaAdN6ANoCEdAsSjWnjyWiXV9lChoBkdAlOn/JV81GmgHTegDaAhHQLEq9PyTY/V1fZQoaAZHQJmKvEk0JnhoB03oA2gIR0CxL8URSP2gdX2UKGgGR0CTSt6DGtITaAdN6ANoCEdAsTHYQTVUdnV9lChoBkdAmLK+tOmBOGgHTegDaAhHQLEyOOlO45N1fZQoaAZHQJgc21OTJQtoB03oA2gIR0CxM5UdV/+bdX2UKGgGR0Cd4n+XJHRUaAdN6ANoCEdAsTc1TrE9+3V9lChoBkdAnDaRsqJ/G2gHTegDaAhHQLE55G+K0lZ1fZQoaAZHQJXp1cv/R3NoB03oA2gIR0CxOneenQ6ZdX2UKGgGR0CV9q1YyO7yaAdN6ANoCEdAsTykKw6hg3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ede32c765685660afbb686d59fbe926d0bb224a482d0a912f13f9c41414a297e
|
3 |
+
size 1109488
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1858.1588774251927, "std_reward": 188.56126537604325, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-06T19:45:51.707398"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b80b6fe8f0874450e2a2c9bfe3455e6f64ecd0736501ae64c82629da69b64e2d
|
3 |
+
size 2136
|