staycoolish commited on
Commit
401b96b
1 Parent(s): 7730690

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.56 +/- 0.96
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a873b1268b211ec8b6bd6f86dfe717172ba30b09c6a0f5f8ccc6213d81e62ab
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f002554d430>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f0025545930>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1678133289682744549,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAPt3zPg23CbzHqA8/Pt3zPg23CbzHqA8/Pt3zPg23CbzHqA8/Pt3zPg23CbzHqA8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwImJP/1HL75NLZA/sCZjvhorYz/U3qg/HYvKPrhNjT/Dvme/0uZ/v700sz+6GvG+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA+3fM+DbcJvMeoDz/jpH08bKM1ulLowDs+3fM+DbcJvMeoDz/jpH08bKM1ulLowDs+3fM+DbcJvMeoDz/jpH08bKM1ulLowDs+3fM+DbcJvMeoDz/jpH08bKM1ulLowDuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.47629732 -0.00840546 0.5611691 ]\n [ 0.47629732 -0.00840546 0.5611691 ]\n [ 0.47629732 -0.00840546 0.5611691 ]\n [ 0.47629732 -0.00840546 0.5611691 ]]",
60
+ "desired_goal": "[[ 1.0745163 -0.17117305 1.1263825 ]\n [-0.22182727 0.8873764 1.3193002 ]\n [ 0.3955926 1.1039343 -0.90525454]\n [-0.9996158 1.400047 -0.47090703]]",
61
+ "observation": "[[ 0.47629732 -0.00840546 0.5611691 0.01548121 -0.0006929 0.00588707]\n [ 0.47629732 -0.00840546 0.5611691 0.01548121 -0.0006929 0.00588707]\n [ 0.47629732 -0.00840546 0.5611691 0.01548121 -0.0006929 0.00588707]\n [ 0.47629732 -0.00840546 0.5611691 0.01548121 -0.0006929 0.00588707]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuFlTvTpzuTtmeos6bQL2PSkbujyOrYI8apHBveJr2r2U8Uw+tDsovbN3kzxuvY49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.05159923 0.00565949 0.00106413]\n [ 0.12012181 0.02271803 0.0159519 ]\n [-0.09451564 -0.10665108 0.2001403 ]\n [-0.04107256 0.01800141 0.06969725]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGCR9WkU/9r+UhpRSlIwBbJRLMowBdJRHQKmPEoUi6hB1fZQoaAZoCWgPQwjRz9TrFoH9v5SGlFKUaBVLMmgWR0Cpjrfvv0AcdX2UKGgGaAloD0MIO4kI/yKo8b+UhpRSlGgVSzJoFkdAqY5KW5YozHV9lChoBmgJaA9DCJxOstXl1Pq/lIaUUpRoFUsyaBZHQKmN5B5X2dx1fZQoaAZoCWgPQwhGlzeHazXyv5SGlFKUaBVLMmgWR0CpkEgrhBJJdX2UKGgGaAloD0MIPBOaJJY0BsCUhpRSlGgVSzJoFkdAqY/sYj0L+nV9lChoBmgJaA9DCP8h/fZ1IP2/lIaUUpRoFUsyaBZHQKmPfaEi+td1fZQoaAZoCWgPQwjVdhN803QAwJSGlFKUaBVLMmgWR0CpjxYqXnhbdX2UKGgGaAloD0MImPbN/dXjBMCUhpRSlGgVSzJoFkdAqZFuZ1FH8XV9lChoBmgJaA9DCNXsgVZgaAjAlIaUUpRoFUsyaBZHQKmRErOqvNh1fZQoaAZoCWgPQwhqLjcY6jD8v5SGlFKUaBVLMmgWR0CpkKQBHTZydX2UKGgGaAloD0MI4xx1dFwNDsCUhpRSlGgVSzJoFkdAqZA8S7GvOnV9lChoBmgJaA9DCOxP4nMnOAzAlIaUUpRoFUsyaBZHQKmSluYQarF1fZQoaAZoCWgPQwhBguLHmLv7v5SGlFKUaBVLMmgWR0CpkjxVQyh0dX2UKGgGaAloD0MIatyb3zBRBsCUhpRSlGgVSzJoFkdAqZHOuaF23nV9lChoBmgJaA9DCJc5XRYTW/6/lIaUUpRoFUsyaBZHQKmRZ6Ggzxh1fZQoaAZoCWgPQwj3yOaqeQ75v5SGlFKUaBVLMmgWR0Cpk67p/wy7dX2UKGgGaAloD0MI2J/E506w+r+UhpRSlGgVSzJoFkdAqZNTYAbQ1XV9lChoBmgJaA9DCJ55Oey+AwrAlIaUUpRoFUsyaBZHQKmS5RwZOzp1fZQoaAZoCWgPQwga+ie4WFEBwJSGlFKUaBVLMmgWR0Cpkn2LP2PDdX2UKGgGaAloD0MIprbUQV6PDMCUhpRSlGgVSzJoFkdAqZTvaURnOHV9lChoBmgJaA9DCF5m2Cjr9/u/lIaUUpRoFUsyaBZHQKmUk7gbZOB1fZQoaAZoCWgPQwgG1nH8UGnwv5SGlFKUaBVLMmgWR0CplCT8xbjcdX2UKGgGaAloD0MIq+y7Ivjf/r+UhpRSlGgVSzJoFkdAqZO9nkDIR3V9lChoBmgJaA9DCPQz9bpFoPy/lIaUUpRoFUsyaBZHQKmWFJ6IFeR1fZQoaAZoCWgPQwgIAfkSKpgHwJSGlFKUaBVLMmgWR0CplblmOEM9dX2UKGgGaAloD0MIza0QVmNJA8CUhpRSlGgVSzJoFkdAqZVKcRUWEnV9lChoBmgJaA9DCLSULCehNALAlIaUUpRoFUsyaBZHQKmU4ueSSvF1fZQoaAZoCWgPQwj5gas8gdAKwJSGlFKUaBVLMmgWR0CplzhDPWxydX2UKGgGaAloD0MIjznP2Jcs+r+UhpRSlGgVSzJoFkdAqZbcjopx3nV9lChoBmgJaA9DCF00ZDxKhQXAlIaUUpRoFUsyaBZHQKmWbegte2N1fZQoaAZoCWgPQwiPw2D+ChkRwJSGlFKUaBVLMmgWR0CplgZLZi/gdX2UKGgGaAloD0MIBabTug2KEMCUhpRSlGgVSzJoFkdAqZhjvXsgMnV9lChoBmgJaA9DCGFsIchBKQnAlIaUUpRoFUsyaBZHQKmYB+I/JNl1fZQoaAZoCWgPQwhJK76h8NkJwJSGlFKUaBVLMmgWR0Cpl5kNe+mFdX2UKGgGaAloD0MInbryWZ4nCcCUhpRSlGgVSzJoFkdAqZcxSUC7snV9lChoBmgJaA9DCEyIuaRqmwDAlIaUUpRoFUsyaBZHQKmZkapgkTp1fZQoaAZoCWgPQwgO9iaG5KT/v5SGlFKUaBVLMmgWR0CpmTX1J17qdX2UKGgGaAloD0MIw9hCkIMS7L+UhpRSlGgVSzJoFkdAqZjHNxEORXV9lChoBmgJaA9DCDAt6pPc4fS/lIaUUpRoFUsyaBZHQKmYX6ciGFl1fZQoaAZoCWgPQwjl7nN8tHgBwJSGlFKUaBVLMmgWR0CpmrUCRwIddX2UKGgGaAloD0MI26fjMQOlEMCUhpRSlGgVSzJoFkdAqZpY64lQdnV9lChoBmgJaA9DCNLI5xVPvQDAlIaUUpRoFUsyaBZHQKmZ6jDbah91fZQoaAZoCWgPQwjJPPIHA0/5v5SGlFKUaBVLMmgWR0CpmYKZ2IO6dX2UKGgGaAloD0MItDo5Q3FHCcCUhpRSlGgVSzJoFkdAqZvruYx+KHV9lChoBmgJaA9DCJy/CYUI+P6/lIaUUpRoFUsyaBZHQKmbj+717IF1fZQoaAZoCWgPQwjuJ2N8mP0CwJSGlFKUaBVLMmgWR0CpmyFAu7HydX2UKGgGaAloD0MId2UXDK458r+UhpRSlGgVSzJoFkdAqZq5zRx95XV9lChoBmgJaA9DCKHa4ET0CxDAlIaUUpRoFUsyaBZHQKmdK7OE/Sp1fZQoaAZoCWgPQwg3/kRlwxryv5SGlFKUaBVLMmgWR0CpnNAGSpzcdX2UKGgGaAloD0MIP6phvydW+L+UhpRSlGgVSzJoFkdAqZxhprULD3V9lChoBmgJaA9DCErUCz7NSfS/lIaUUpRoFUsyaBZHQKmb+oQ4CIV1fZQoaAZoCWgPQwh6ihwibi4AwJSGlFKUaBVLMmgWR0CpnlX6yjYadX2UKGgGaAloD0MIuhXCaiyh9b+UhpRSlGgVSzJoFkdAqZ36UkfLcXV9lChoBmgJaA9DCMST3czoBxDAlIaUUpRoFUsyaBZHQKmdi4CIUJx1fZQoaAZoCWgPQwgXt9EA3sL9v5SGlFKUaBVLMmgWR0CpnSQIdELIdX2UKGgGaAloD0MI5BWInpRpDsCUhpRSlGgVSzJoFkdAqZ+BYJVsDXV9lChoBmgJaA9DCI9TdCSXvwzAlIaUUpRoFUsyaBZHQKmfJaUzKtB1fZQoaAZoCWgPQwgoJ9pVSLnwv5SGlFKUaBVLMmgWR0CpnrbqhUR4dX2UKGgGaAloD0MI3EduTbptEsCUhpRSlGgVSzJoFkdAqZ5PicXm/3V9lChoBmgJaA9DCKiMf59x4fW/lIaUUpRoFUsyaBZHQKmgvOGj9GZ1fZQoaAZoCWgPQwjA0CNGz234v5SGlFKUaBVLMmgWR0CpoGFar3j/dX2UKGgGaAloD0MIVRhbCHKAEMCUhpRSlGgVSzJoFkdAqZ/yyWzF/HV9lChoBmgJaA9DCILjMm5qIPi/lIaUUpRoFUsyaBZHQKmfi2sq8UV1fZQoaAZoCWgPQwjzBS0kYHT3v5SGlFKUaBVLMmgWR0CpoffaQFLWdX2UKGgGaAloD0MIfF9cqtJW9b+UhpRSlGgVSzJoFkdAqaGcRQJokHV9lChoBmgJaA9DCBTMmII1Tv2/lIaUUpRoFUsyaBZHQKmhLYT0xud1fZQoaAZoCWgPQwi1iv7QzBMHwJSGlFKUaBVLMmgWR0CpoMXxOLzgdX2UKGgGaAloD0MIbLJGPURDAcCUhpRSlGgVSzJoFkdAqaMm/tY0VXV9lChoBmgJaA9DCJ1GWipvZwfAlIaUUpRoFUsyaBZHQKmiyy4Wk8B1fZQoaAZoCWgPQwiZm29E96z4v5SGlFKUaBVLMmgWR0Cpolw4bS7YdX2UKGgGaAloD0MIhq5EoPrH97+UhpRSlGgVSzJoFkdAqaH0ophF3XV9lChoBmgJaA9DCDLp76XwIAbAlIaUUpRoFUsyaBZHQKmlGF36hxp1fZQoaAZoCWgPQwiVtrjGZ/Lzv5SGlFKUaBVLMmgWR0CppL7LlmvodX2UKGgGaAloD0MIBkzg1t38/7+UhpRSlGgVSzJoFkdAqaRQ287IUHV9lChoBmgJaA9DCN4gWiva3P6/lIaUUpRoFUsyaBZHQKmj6o2n8891fZQoaAZoCWgPQwjeWbvtQnMQwJSGlFKUaBVLMmgWR0CppwxgRbr1dX2UKGgGaAloD0MIl4+kpIehD8CUhpRSlGgVSzJoFkdAqaayZ2IO6XV9lChoBmgJaA9DCANgPIOGfvO/lIaUUpRoFUsyaBZHQKmmRPYWcjJ1fZQoaAZoCWgPQwhjJlEv+DQQwJSGlFKUaBVLMmgWR0Cppd5nUUfxdX2UKGgGaAloD0MID4C4q1dRCcCUhpRSlGgVSzJoFkdAqakIUDdP+HV9lChoBmgJaA9DCPwZ3qzBuwHAlIaUUpRoFUsyaBZHQKmorcTrVvx1fZQoaAZoCWgPQwglkBK7thcAwJSGlFKUaBVLMmgWR0CpqEBLPD51dX2UKGgGaAloD0MI9ODurN12/L+UhpRSlGgVSzJoFkdAqafaCaqjrXV9lChoBmgJaA9DCNuLaDumrv2/lIaUUpRoFUsyaBZHQKmrFDQ7cO91fZQoaAZoCWgPQwjG98WlKs0GwJSGlFKUaBVLMmgWR0CpqrmFrVOLdX2UKGgGaAloD0MI2LrUCP2M97+UhpRSlGgVSzJoFkdAqapLzCk43nV9lChoBmgJaA9DCKlpF9NM1wLAlIaUUpRoFUsyaBZHQKmp5Yoy9El1fZQoaAZoCWgPQwg1Q6ooXmUOwJSGlFKUaBVLMmgWR0CprTZLZi/gdX2UKGgGaAloD0MIzxH5LqVOBcCUhpRSlGgVSzJoFkdAqazbqyGBWnV9lChoBmgJaA9DCFgczvxqrg7AlIaUUpRoFUsyaBZHQKmsbc580DV1fZQoaAZoCWgPQwgM5US7CukHwJSGlFKUaBVLMmgWR0CprAhUrCm/dX2UKGgGaAloD0MIkGeXb32YA8CUhpRSlGgVSzJoFkdAqa7i9PDYRXV9lChoBmgJaA9DCHb/WIgOQQjAlIaUUpRoFUsyaBZHQKmuhy5qdpZ1fZQoaAZoCWgPQwgO95Fbk674v5SGlFKUaBVLMmgWR0CprhiEHt4SdX2UKGgGaAloD0MIWTSdnQyuAMCUhpRSlGgVSzJoFkdAqa2xFqi48XV9lChoBmgJaA9DCGAGY0SiMADAlIaUUpRoFUsyaBZHQKmwEmQbMot1fZQoaAZoCWgPQwipiT4fZQQGwJSGlFKUaBVLMmgWR0Cpr7aya/h3dX2UKGgGaAloD0MI1T+IZMgxDsCUhpRSlGgVSzJoFkdAqa9H9tMwlHV9lChoBmgJaA9DCAqjWdk+JAfAlIaUUpRoFUsyaBZHQKmu4IpH7P91ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bc3bd612d070789bb066064616f6517edc91d60a601526ad169af2b39920018
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8f5a815f023f929e9016a96934e60dfda518f453b0b6dbbd591dcaf3d92d8fe
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f002554d430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0025545930>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678133289682744549, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAPt3zPg23CbzHqA8/Pt3zPg23CbzHqA8/Pt3zPg23CbzHqA8/Pt3zPg23CbzHqA8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwImJP/1HL75NLZA/sCZjvhorYz/U3qg/HYvKPrhNjT/Dvme/0uZ/v700sz+6GvG+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA+3fM+DbcJvMeoDz/jpH08bKM1ulLowDs+3fM+DbcJvMeoDz/jpH08bKM1ulLowDs+3fM+DbcJvMeoDz/jpH08bKM1ulLowDs+3fM+DbcJvMeoDz/jpH08bKM1ulLowDuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.47629732 -0.00840546 0.5611691 ]\n [ 0.47629732 -0.00840546 0.5611691 ]\n [ 0.47629732 -0.00840546 0.5611691 ]\n [ 0.47629732 -0.00840546 0.5611691 ]]", "desired_goal": "[[ 1.0745163 -0.17117305 1.1263825 ]\n [-0.22182727 0.8873764 1.3193002 ]\n [ 0.3955926 1.1039343 -0.90525454]\n [-0.9996158 1.400047 -0.47090703]]", "observation": "[[ 0.47629732 -0.00840546 0.5611691 0.01548121 -0.0006929 0.00588707]\n [ 0.47629732 -0.00840546 0.5611691 0.01548121 -0.0006929 0.00588707]\n [ 0.47629732 -0.00840546 0.5611691 0.01548121 -0.0006929 0.00588707]\n [ 0.47629732 -0.00840546 0.5611691 0.01548121 -0.0006929 0.00588707]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuFlTvTpzuTtmeos6bQL2PSkbujyOrYI8apHBveJr2r2U8Uw+tDsovbN3kzxuvY49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.05159923 0.00565949 0.00106413]\n [ 0.12012181 0.02271803 0.0159519 ]\n [-0.09451564 -0.10665108 0.2001403 ]\n [-0.04107256 0.01800141 0.06969725]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGCR9WkU/9r+UhpRSlIwBbJRLMowBdJRHQKmPEoUi6hB1fZQoaAZoCWgPQwjRz9TrFoH9v5SGlFKUaBVLMmgWR0Cpjrfvv0AcdX2UKGgGaAloD0MIO4kI/yKo8b+UhpRSlGgVSzJoFkdAqY5KW5YozHV9lChoBmgJaA9DCJxOstXl1Pq/lIaUUpRoFUsyaBZHQKmN5B5X2dx1fZQoaAZoCWgPQwhGlzeHazXyv5SGlFKUaBVLMmgWR0CpkEgrhBJJdX2UKGgGaAloD0MIPBOaJJY0BsCUhpRSlGgVSzJoFkdAqY/sYj0L+nV9lChoBmgJaA9DCP8h/fZ1IP2/lIaUUpRoFUsyaBZHQKmPfaEi+td1fZQoaAZoCWgPQwjVdhN803QAwJSGlFKUaBVLMmgWR0CpjxYqXnhbdX2UKGgGaAloD0MImPbN/dXjBMCUhpRSlGgVSzJoFkdAqZFuZ1FH8XV9lChoBmgJaA9DCNXsgVZgaAjAlIaUUpRoFUsyaBZHQKmRErOqvNh1fZQoaAZoCWgPQwhqLjcY6jD8v5SGlFKUaBVLMmgWR0CpkKQBHTZydX2UKGgGaAloD0MI4xx1dFwNDsCUhpRSlGgVSzJoFkdAqZA8S7GvOnV9lChoBmgJaA9DCOxP4nMnOAzAlIaUUpRoFUsyaBZHQKmSluYQarF1fZQoaAZoCWgPQwhBguLHmLv7v5SGlFKUaBVLMmgWR0CpkjxVQyh0dX2UKGgGaAloD0MIatyb3zBRBsCUhpRSlGgVSzJoFkdAqZHOuaF23nV9lChoBmgJaA9DCJc5XRYTW/6/lIaUUpRoFUsyaBZHQKmRZ6Ggzxh1fZQoaAZoCWgPQwj3yOaqeQ75v5SGlFKUaBVLMmgWR0Cpk67p/wy7dX2UKGgGaAloD0MI2J/E506w+r+UhpRSlGgVSzJoFkdAqZNTYAbQ1XV9lChoBmgJaA9DCJ55Oey+AwrAlIaUUpRoFUsyaBZHQKmS5RwZOzp1fZQoaAZoCWgPQwga+ie4WFEBwJSGlFKUaBVLMmgWR0Cpkn2LP2PDdX2UKGgGaAloD0MIprbUQV6PDMCUhpRSlGgVSzJoFkdAqZTvaURnOHV9lChoBmgJaA9DCF5m2Cjr9/u/lIaUUpRoFUsyaBZHQKmUk7gbZOB1fZQoaAZoCWgPQwgG1nH8UGnwv5SGlFKUaBVLMmgWR0CplCT8xbjcdX2UKGgGaAloD0MIq+y7Ivjf/r+UhpRSlGgVSzJoFkdAqZO9nkDIR3V9lChoBmgJaA9DCPQz9bpFoPy/lIaUUpRoFUsyaBZHQKmWFJ6IFeR1fZQoaAZoCWgPQwgIAfkSKpgHwJSGlFKUaBVLMmgWR0CplblmOEM9dX2UKGgGaAloD0MIza0QVmNJA8CUhpRSlGgVSzJoFkdAqZVKcRUWEnV9lChoBmgJaA9DCLSULCehNALAlIaUUpRoFUsyaBZHQKmU4ueSSvF1fZQoaAZoCWgPQwj5gas8gdAKwJSGlFKUaBVLMmgWR0CplzhDPWxydX2UKGgGaAloD0MIjznP2Jcs+r+UhpRSlGgVSzJoFkdAqZbcjopx3nV9lChoBmgJaA9DCF00ZDxKhQXAlIaUUpRoFUsyaBZHQKmWbegte2N1fZQoaAZoCWgPQwiPw2D+ChkRwJSGlFKUaBVLMmgWR0CplgZLZi/gdX2UKGgGaAloD0MIBabTug2KEMCUhpRSlGgVSzJoFkdAqZhjvXsgMnV9lChoBmgJaA9DCGFsIchBKQnAlIaUUpRoFUsyaBZHQKmYB+I/JNl1fZQoaAZoCWgPQwhJK76h8NkJwJSGlFKUaBVLMmgWR0Cpl5kNe+mFdX2UKGgGaAloD0MInbryWZ4nCcCUhpRSlGgVSzJoFkdAqZcxSUC7snV9lChoBmgJaA9DCEyIuaRqmwDAlIaUUpRoFUsyaBZHQKmZkapgkTp1fZQoaAZoCWgPQwgO9iaG5KT/v5SGlFKUaBVLMmgWR0CpmTX1J17qdX2UKGgGaAloD0MIw9hCkIMS7L+UhpRSlGgVSzJoFkdAqZjHNxEORXV9lChoBmgJaA9DCDAt6pPc4fS/lIaUUpRoFUsyaBZHQKmYX6ciGFl1fZQoaAZoCWgPQwjl7nN8tHgBwJSGlFKUaBVLMmgWR0CpmrUCRwIddX2UKGgGaAloD0MI26fjMQOlEMCUhpRSlGgVSzJoFkdAqZpY64lQdnV9lChoBmgJaA9DCNLI5xVPvQDAlIaUUpRoFUsyaBZHQKmZ6jDbah91fZQoaAZoCWgPQwjJPPIHA0/5v5SGlFKUaBVLMmgWR0CpmYKZ2IO6dX2UKGgGaAloD0MItDo5Q3FHCcCUhpRSlGgVSzJoFkdAqZvruYx+KHV9lChoBmgJaA9DCJy/CYUI+P6/lIaUUpRoFUsyaBZHQKmbj+717IF1fZQoaAZoCWgPQwjuJ2N8mP0CwJSGlFKUaBVLMmgWR0CpmyFAu7HydX2UKGgGaAloD0MId2UXDK458r+UhpRSlGgVSzJoFkdAqZq5zRx95XV9lChoBmgJaA9DCKHa4ET0CxDAlIaUUpRoFUsyaBZHQKmdK7OE/Sp1fZQoaAZoCWgPQwg3/kRlwxryv5SGlFKUaBVLMmgWR0CpnNAGSpzcdX2UKGgGaAloD0MIP6phvydW+L+UhpRSlGgVSzJoFkdAqZxhprULD3V9lChoBmgJaA9DCErUCz7NSfS/lIaUUpRoFUsyaBZHQKmb+oQ4CIV1fZQoaAZoCWgPQwh6ihwibi4AwJSGlFKUaBVLMmgWR0CpnlX6yjYadX2UKGgGaAloD0MIuhXCaiyh9b+UhpRSlGgVSzJoFkdAqZ36UkfLcXV9lChoBmgJaA9DCMST3czoBxDAlIaUUpRoFUsyaBZHQKmdi4CIUJx1fZQoaAZoCWgPQwgXt9EA3sL9v5SGlFKUaBVLMmgWR0CpnSQIdELIdX2UKGgGaAloD0MI5BWInpRpDsCUhpRSlGgVSzJoFkdAqZ+BYJVsDXV9lChoBmgJaA9DCI9TdCSXvwzAlIaUUpRoFUsyaBZHQKmfJaUzKtB1fZQoaAZoCWgPQwgoJ9pVSLnwv5SGlFKUaBVLMmgWR0CpnrbqhUR4dX2UKGgGaAloD0MI3EduTbptEsCUhpRSlGgVSzJoFkdAqZ5PicXm/3V9lChoBmgJaA9DCKiMf59x4fW/lIaUUpRoFUsyaBZHQKmgvOGj9GZ1fZQoaAZoCWgPQwjA0CNGz234v5SGlFKUaBVLMmgWR0CpoGFar3j/dX2UKGgGaAloD0MIVRhbCHKAEMCUhpRSlGgVSzJoFkdAqZ/yyWzF/HV9lChoBmgJaA9DCILjMm5qIPi/lIaUUpRoFUsyaBZHQKmfi2sq8UV1fZQoaAZoCWgPQwjzBS0kYHT3v5SGlFKUaBVLMmgWR0CpoffaQFLWdX2UKGgGaAloD0MIfF9cqtJW9b+UhpRSlGgVSzJoFkdAqaGcRQJokHV9lChoBmgJaA9DCBTMmII1Tv2/lIaUUpRoFUsyaBZHQKmhLYT0xud1fZQoaAZoCWgPQwi1iv7QzBMHwJSGlFKUaBVLMmgWR0CpoMXxOLzgdX2UKGgGaAloD0MIbLJGPURDAcCUhpRSlGgVSzJoFkdAqaMm/tY0VXV9lChoBmgJaA9DCJ1GWipvZwfAlIaUUpRoFUsyaBZHQKmiyy4Wk8B1fZQoaAZoCWgPQwiZm29E96z4v5SGlFKUaBVLMmgWR0Cpolw4bS7YdX2UKGgGaAloD0MIhq5EoPrH97+UhpRSlGgVSzJoFkdAqaH0ophF3XV9lChoBmgJaA9DCDLp76XwIAbAlIaUUpRoFUsyaBZHQKmlGF36hxp1fZQoaAZoCWgPQwiVtrjGZ/Lzv5SGlFKUaBVLMmgWR0CppL7LlmvodX2UKGgGaAloD0MIBkzg1t38/7+UhpRSlGgVSzJoFkdAqaRQ287IUHV9lChoBmgJaA9DCN4gWiva3P6/lIaUUpRoFUsyaBZHQKmj6o2n8891fZQoaAZoCWgPQwjeWbvtQnMQwJSGlFKUaBVLMmgWR0CppwxgRbr1dX2UKGgGaAloD0MIl4+kpIehD8CUhpRSlGgVSzJoFkdAqaayZ2IO6XV9lChoBmgJaA9DCANgPIOGfvO/lIaUUpRoFUsyaBZHQKmmRPYWcjJ1fZQoaAZoCWgPQwhjJlEv+DQQwJSGlFKUaBVLMmgWR0Cppd5nUUfxdX2UKGgGaAloD0MID4C4q1dRCcCUhpRSlGgVSzJoFkdAqakIUDdP+HV9lChoBmgJaA9DCPwZ3qzBuwHAlIaUUpRoFUsyaBZHQKmorcTrVvx1fZQoaAZoCWgPQwglkBK7thcAwJSGlFKUaBVLMmgWR0CpqEBLPD51dX2UKGgGaAloD0MI9ODurN12/L+UhpRSlGgVSzJoFkdAqafaCaqjrXV9lChoBmgJaA9DCNuLaDumrv2/lIaUUpRoFUsyaBZHQKmrFDQ7cO91fZQoaAZoCWgPQwjG98WlKs0GwJSGlFKUaBVLMmgWR0CpqrmFrVOLdX2UKGgGaAloD0MI2LrUCP2M97+UhpRSlGgVSzJoFkdAqapLzCk43nV9lChoBmgJaA9DCKlpF9NM1wLAlIaUUpRoFUsyaBZHQKmp5Yoy9El1fZQoaAZoCWgPQwg1Q6ooXmUOwJSGlFKUaBVLMmgWR0CprTZLZi/gdX2UKGgGaAloD0MIzxH5LqVOBcCUhpRSlGgVSzJoFkdAqazbqyGBWnV9lChoBmgJaA9DCFgczvxqrg7AlIaUUpRoFUsyaBZHQKmsbc580DV1fZQoaAZoCWgPQwgM5US7CukHwJSGlFKUaBVLMmgWR0CprAhUrCm/dX2UKGgGaAloD0MIkGeXb32YA8CUhpRSlGgVSzJoFkdAqa7i9PDYRXV9lChoBmgJaA9DCHb/WIgOQQjAlIaUUpRoFUsyaBZHQKmuhy5qdpZ1fZQoaAZoCWgPQwgO95Fbk674v5SGlFKUaBVLMmgWR0CprhiEHt4SdX2UKGgGaAloD0MIWTSdnQyuAMCUhpRSlGgVSzJoFkdAqa2xFqi48XV9lChoBmgJaA9DCGAGY0SiMADAlIaUUpRoFUsyaBZHQKmwEmQbMot1fZQoaAZoCWgPQwipiT4fZQQGwJSGlFKUaBVLMmgWR0Cpr7aya/h3dX2UKGgGaAloD0MI1T+IZMgxDsCUhpRSlGgVSzJoFkdAqa9H9tMwlHV9lChoBmgJaA9DCAqjWdk+JAfAlIaUUpRoFUsyaBZHQKmu4IpH7P91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (351 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.5640908805653453, "std_reward": 0.9583924082873762, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-06T21:12:04.919420"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84f6bbdbe12e12eb5b3006acb9dc0eca0c2af62a263e15ca8d7b03c606cd64a0
3
+ size 3056