stefan-it commited on
Commit
a0961c9
·
verified ·
1 Parent(s): 6c17c22

readme: add initial version

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: flair
5
+ pipeline_tag: token-classification
6
+ base_model: FacebookAI/xlm-roberta-large
7
+ widget:
8
+ - text: According to the BBC George Washington went to Washington.
9
+ ---
10
+
11
+ # Flair NER Model trained on CleanCoNLL Dataset
12
+
13
+ This (unofficial) Flair NER model was trained on the awesome [CleanCoNLL](https://aclanthology.org/2023.emnlp-main.533/) dataset.
14
+
15
+ The CleanCoNLL dataset was proposed by Susanna Rücker and Alan Akbik and introduces a corrected version of the classic CoNLL-03 dataset, with updated and more consistent NER labels.
16
+
17
+ ## Fine-Tuning
18
+
19
+ We use XLM-RoBERTa Large as backbone language model and the following hyper-parameters for fine-tuning:
20
+
21
+ | Hyper-Parameter | Value |
22
+ |:--------------- |:-------|
23
+ | Batch Size | `4` |
24
+ | Learning Rate | `5-06` |
25
+ | Max. Epochs | `10` |
26
+
27
+ Additionally, the [FLERT](https://arxiv.org/abs/2011.06993) approach is used for fine-tuning the model. [Training logs](training.log) and [TensorBoard](../../tensorboard) are also available for each model.
28
+
29
+ ## Results
30
+
31
+ We report micro F1-Score on development (in brackets) and test set for five runs with different seeds:
32
+
33
+ | [Seed 1][1] | [Seed 2][2] | [Seed 3][3] | [Seed 4][4] | [Seed 5][5] | Avg.
34
+ |:--------------- |:--------------- |:--------------- |:--------------- |:--------------- |:--------------- |
35
+ | (97.34) / 97.00 | (97.26) / 96.90 | (97.66) / 97.02 | (97.42) / 96.96 | (97.46) / 96.99 | (97.43) / 96.97 |
36
+
37
+ Rücker and Akbik report 96.98 on three different runs, so our results are very close to their reported performance!
38
+
39
+ [1]: https://huggingface.co/stefan-it/flair-clean-conll-1
40
+ [2]: https://huggingface.co/stefan-it/flair-clean-conll-2
41
+ [3]: https://huggingface.co/stefan-it/flair-clean-conll-3
42
+ [4]: https://huggingface.co/stefan-it/flair-clean-conll-4
43
+ [5]: https://huggingface.co/stefan-it/flair-clean-conll-5
44
+
45
+ # Flair Demo
46
+
47
+ The following snippet shows how to use the CleanCoNLL NER models with Flair:
48
+
49
+ ```python
50
+ from flair.data import Sentence
51
+ from flair.models import SequenceTagger
52
+
53
+ # load tagger
54
+ tagger = SequenceTagger.load("stefan-it/flair-clean-conll-4")
55
+
56
+ # make example sentence
57
+ sentence = Sentence("According to the BBC George Washington went to Washington.")
58
+
59
+ # predict NER tags
60
+ tagger.predict(sentence)
61
+
62
+ # print sentence
63
+ print(sentence)
64
+
65
+ # print predicted NER spans
66
+ print('The following NER tags are found:')
67
+ # iterate over entities and print
68
+ for entity in sentence.get_spans('ner'):
69
+ print(entity)
70
+ ```