File size: 23,816 Bytes
e6aea09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
2024-03-26 10:41:29,094 ----------------------------------------------------------------------------------------------------
2024-03-26 10:41:29,095 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(31103, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 10:41:29,095 ----------------------------------------------------------------------------------------------------
2024-03-26 10:41:29,095 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 10:41:29,095 ----------------------------------------------------------------------------------------------------
2024-03-26 10:41:29,095 Train: 758 sentences
2024-03-26 10:41:29,095 (train_with_dev=False, train_with_test=False)
2024-03-26 10:41:29,095 ----------------------------------------------------------------------------------------------------
2024-03-26 10:41:29,095 Training Params:
2024-03-26 10:41:29,095 - learning_rate: "3e-05"
2024-03-26 10:41:29,095 - mini_batch_size: "8"
2024-03-26 10:41:29,095 - max_epochs: "10"
2024-03-26 10:41:29,095 - shuffle: "True"
2024-03-26 10:41:29,095 ----------------------------------------------------------------------------------------------------
2024-03-26 10:41:29,095 Plugins:
2024-03-26 10:41:29,095 - TensorboardLogger
2024-03-26 10:41:29,095 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 10:41:29,095 ----------------------------------------------------------------------------------------------------
2024-03-26 10:41:29,095 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 10:41:29,095 - metric: "('micro avg', 'f1-score')"
2024-03-26 10:41:29,095 ----------------------------------------------------------------------------------------------------
2024-03-26 10:41:29,095 Computation:
2024-03-26 10:41:29,095 - compute on device: cuda:0
2024-03-26 10:41:29,095 - embedding storage: none
2024-03-26 10:41:29,095 ----------------------------------------------------------------------------------------------------
2024-03-26 10:41:29,095 Model training base path: "flair-co-funer-gbert_base-bs8-e10-lr3e-05-5"
2024-03-26 10:41:29,095 ----------------------------------------------------------------------------------------------------
2024-03-26 10:41:29,095 ----------------------------------------------------------------------------------------------------
2024-03-26 10:41:29,095 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 10:41:30,964 epoch 1 - iter 9/95 - loss 3.42654605 - time (sec): 1.87 - samples/sec: 1678.28 - lr: 0.000003 - momentum: 0.000000
2024-03-26 10:41:32,825 epoch 1 - iter 18/95 - loss 3.24644063 - time (sec): 3.73 - samples/sec: 1778.68 - lr: 0.000005 - momentum: 0.000000
2024-03-26 10:41:35,107 epoch 1 - iter 27/95 - loss 3.02768317 - time (sec): 6.01 - samples/sec: 1725.38 - lr: 0.000008 - momentum: 0.000000
2024-03-26 10:41:36,586 epoch 1 - iter 36/95 - loss 2.85323508 - time (sec): 7.49 - samples/sec: 1803.47 - lr: 0.000011 - momentum: 0.000000
2024-03-26 10:41:38,735 epoch 1 - iter 45/95 - loss 2.68498607 - time (sec): 9.64 - samples/sec: 1782.83 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:41:40,309 epoch 1 - iter 54/95 - loss 2.53008030 - time (sec): 11.21 - samples/sec: 1804.43 - lr: 0.000017 - momentum: 0.000000
2024-03-26 10:41:41,933 epoch 1 - iter 63/95 - loss 2.40929636 - time (sec): 12.84 - samples/sec: 1823.01 - lr: 0.000020 - momentum: 0.000000
2024-03-26 10:41:43,810 epoch 1 - iter 72/95 - loss 2.29079356 - time (sec): 14.71 - samples/sec: 1814.54 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:41:45,869 epoch 1 - iter 81/95 - loss 2.15393416 - time (sec): 16.77 - samples/sec: 1797.45 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:41:47,485 epoch 1 - iter 90/95 - loss 2.04297528 - time (sec): 18.39 - samples/sec: 1790.48 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:41:48,235 ----------------------------------------------------------------------------------------------------
2024-03-26 10:41:48,235 EPOCH 1 done: loss 1.9877 - lr: 0.000028
2024-03-26 10:41:49,212 DEV : loss 0.5643121004104614 - f1-score (micro avg) 0.5905
2024-03-26 10:41:49,213 saving best model
2024-03-26 10:41:49,488 ----------------------------------------------------------------------------------------------------
2024-03-26 10:41:51,746 epoch 2 - iter 9/95 - loss 0.75423522 - time (sec): 2.26 - samples/sec: 1690.40 - lr: 0.000030 - momentum: 0.000000
2024-03-26 10:41:53,648 epoch 2 - iter 18/95 - loss 0.67076063 - time (sec): 4.16 - samples/sec: 1681.81 - lr: 0.000029 - momentum: 0.000000
2024-03-26 10:41:55,955 epoch 2 - iter 27/95 - loss 0.59698468 - time (sec): 6.47 - samples/sec: 1654.32 - lr: 0.000029 - momentum: 0.000000
2024-03-26 10:41:57,307 epoch 2 - iter 36/95 - loss 0.56867706 - time (sec): 7.82 - samples/sec: 1767.41 - lr: 0.000029 - momentum: 0.000000
2024-03-26 10:41:59,255 epoch 2 - iter 45/95 - loss 0.52773200 - time (sec): 9.77 - samples/sec: 1728.14 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:42:00,571 epoch 2 - iter 54/95 - loss 0.51655232 - time (sec): 11.08 - samples/sec: 1773.56 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:42:02,135 epoch 2 - iter 63/95 - loss 0.49530789 - time (sec): 12.65 - samples/sec: 1789.56 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:42:04,204 epoch 2 - iter 72/95 - loss 0.48119961 - time (sec): 14.72 - samples/sec: 1781.11 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:42:06,106 epoch 2 - iter 81/95 - loss 0.48406945 - time (sec): 16.62 - samples/sec: 1780.83 - lr: 0.000027 - momentum: 0.000000
2024-03-26 10:42:08,031 epoch 2 - iter 90/95 - loss 0.46381765 - time (sec): 18.54 - samples/sec: 1783.79 - lr: 0.000027 - momentum: 0.000000
2024-03-26 10:42:08,613 ----------------------------------------------------------------------------------------------------
2024-03-26 10:42:08,613 EPOCH 2 done: loss 0.4626 - lr: 0.000027
2024-03-26 10:42:09,533 DEV : loss 0.2954573631286621 - f1-score (micro avg) 0.8136
2024-03-26 10:42:09,534 saving best model
2024-03-26 10:42:09,992 ----------------------------------------------------------------------------------------------------
2024-03-26 10:42:11,211 epoch 3 - iter 9/95 - loss 0.34685241 - time (sec): 1.22 - samples/sec: 2129.79 - lr: 0.000026 - momentum: 0.000000
2024-03-26 10:42:13,447 epoch 3 - iter 18/95 - loss 0.29465517 - time (sec): 3.45 - samples/sec: 1858.92 - lr: 0.000026 - momentum: 0.000000
2024-03-26 10:42:15,149 epoch 3 - iter 27/95 - loss 0.29721879 - time (sec): 5.16 - samples/sec: 1892.76 - lr: 0.000026 - momentum: 0.000000
2024-03-26 10:42:16,842 epoch 3 - iter 36/95 - loss 0.27964027 - time (sec): 6.85 - samples/sec: 1923.01 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:42:18,293 epoch 3 - iter 45/95 - loss 0.26416821 - time (sec): 8.30 - samples/sec: 1913.63 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:42:20,409 epoch 3 - iter 54/95 - loss 0.25431604 - time (sec): 10.42 - samples/sec: 1854.76 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:42:22,078 epoch 3 - iter 63/95 - loss 0.25168090 - time (sec): 12.08 - samples/sec: 1841.80 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:42:24,353 epoch 3 - iter 72/95 - loss 0.24092237 - time (sec): 14.36 - samples/sec: 1806.47 - lr: 0.000024 - momentum: 0.000000
2024-03-26 10:42:26,535 epoch 3 - iter 81/95 - loss 0.24173243 - time (sec): 16.54 - samples/sec: 1799.51 - lr: 0.000024 - momentum: 0.000000
2024-03-26 10:42:28,291 epoch 3 - iter 90/95 - loss 0.23675211 - time (sec): 18.30 - samples/sec: 1788.31 - lr: 0.000024 - momentum: 0.000000
2024-03-26 10:42:29,170 ----------------------------------------------------------------------------------------------------
2024-03-26 10:42:29,170 EPOCH 3 done: loss 0.2346 - lr: 0.000024
2024-03-26 10:42:30,083 DEV : loss 0.25258246064186096 - f1-score (micro avg) 0.8418
2024-03-26 10:42:30,086 saving best model
2024-03-26 10:42:30,548 ----------------------------------------------------------------------------------------------------
2024-03-26 10:42:33,320 epoch 4 - iter 9/95 - loss 0.13973827 - time (sec): 2.77 - samples/sec: 1539.99 - lr: 0.000023 - momentum: 0.000000
2024-03-26 10:42:34,368 epoch 4 - iter 18/95 - loss 0.17102613 - time (sec): 3.82 - samples/sec: 1742.16 - lr: 0.000023 - momentum: 0.000000
2024-03-26 10:42:36,871 epoch 4 - iter 27/95 - loss 0.15553756 - time (sec): 6.32 - samples/sec: 1682.43 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:42:39,490 epoch 4 - iter 36/95 - loss 0.15521838 - time (sec): 8.94 - samples/sec: 1623.06 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:42:41,198 epoch 4 - iter 45/95 - loss 0.14604913 - time (sec): 10.65 - samples/sec: 1653.87 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:42:42,912 epoch 4 - iter 54/95 - loss 0.14691915 - time (sec): 12.36 - samples/sec: 1666.30 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:42:44,820 epoch 4 - iter 63/95 - loss 0.14863785 - time (sec): 14.27 - samples/sec: 1692.65 - lr: 0.000021 - momentum: 0.000000
2024-03-26 10:42:46,497 epoch 4 - iter 72/95 - loss 0.15029495 - time (sec): 15.95 - samples/sec: 1740.39 - lr: 0.000021 - momentum: 0.000000
2024-03-26 10:42:47,539 epoch 4 - iter 81/95 - loss 0.15078477 - time (sec): 16.99 - samples/sec: 1778.33 - lr: 0.000021 - momentum: 0.000000
2024-03-26 10:42:48,951 epoch 4 - iter 90/95 - loss 0.15106787 - time (sec): 18.40 - samples/sec: 1803.55 - lr: 0.000020 - momentum: 0.000000
2024-03-26 10:42:49,495 ----------------------------------------------------------------------------------------------------
2024-03-26 10:42:49,495 EPOCH 4 done: loss 0.1534 - lr: 0.000020
2024-03-26 10:42:50,400 DEV : loss 0.19777600467205048 - f1-score (micro avg) 0.8718
2024-03-26 10:42:50,403 saving best model
2024-03-26 10:42:50,855 ----------------------------------------------------------------------------------------------------
2024-03-26 10:42:52,508 epoch 5 - iter 9/95 - loss 0.15220596 - time (sec): 1.65 - samples/sec: 1983.92 - lr: 0.000020 - momentum: 0.000000
2024-03-26 10:42:54,479 epoch 5 - iter 18/95 - loss 0.13098915 - time (sec): 3.62 - samples/sec: 1965.88 - lr: 0.000019 - momentum: 0.000000
2024-03-26 10:42:56,595 epoch 5 - iter 27/95 - loss 0.11083492 - time (sec): 5.74 - samples/sec: 1845.02 - lr: 0.000019 - momentum: 0.000000
2024-03-26 10:42:57,933 epoch 5 - iter 36/95 - loss 0.11927393 - time (sec): 7.08 - samples/sec: 1899.89 - lr: 0.000019 - momentum: 0.000000
2024-03-26 10:43:00,030 epoch 5 - iter 45/95 - loss 0.11574143 - time (sec): 9.17 - samples/sec: 1857.47 - lr: 0.000019 - momentum: 0.000000
2024-03-26 10:43:01,203 epoch 5 - iter 54/95 - loss 0.11686041 - time (sec): 10.35 - samples/sec: 1892.44 - lr: 0.000018 - momentum: 0.000000
2024-03-26 10:43:02,679 epoch 5 - iter 63/95 - loss 0.11820642 - time (sec): 11.82 - samples/sec: 1906.99 - lr: 0.000018 - momentum: 0.000000
2024-03-26 10:43:04,594 epoch 5 - iter 72/95 - loss 0.11682067 - time (sec): 13.74 - samples/sec: 1879.84 - lr: 0.000018 - momentum: 0.000000
2024-03-26 10:43:06,357 epoch 5 - iter 81/95 - loss 0.11463584 - time (sec): 15.50 - samples/sec: 1868.66 - lr: 0.000017 - momentum: 0.000000
2024-03-26 10:43:08,774 epoch 5 - iter 90/95 - loss 0.11201321 - time (sec): 17.92 - samples/sec: 1835.01 - lr: 0.000017 - momentum: 0.000000
2024-03-26 10:43:09,747 ----------------------------------------------------------------------------------------------------
2024-03-26 10:43:09,747 EPOCH 5 done: loss 0.1090 - lr: 0.000017
2024-03-26 10:43:10,665 DEV : loss 0.19377665221691132 - f1-score (micro avg) 0.9065
2024-03-26 10:43:10,666 saving best model
2024-03-26 10:43:11,119 ----------------------------------------------------------------------------------------------------
2024-03-26 10:43:13,150 epoch 6 - iter 9/95 - loss 0.10470235 - time (sec): 2.03 - samples/sec: 1606.17 - lr: 0.000016 - momentum: 0.000000
2024-03-26 10:43:15,582 epoch 6 - iter 18/95 - loss 0.10237268 - time (sec): 4.46 - samples/sec: 1661.59 - lr: 0.000016 - momentum: 0.000000
2024-03-26 10:43:16,733 epoch 6 - iter 27/95 - loss 0.11282455 - time (sec): 5.61 - samples/sec: 1761.06 - lr: 0.000016 - momentum: 0.000000
2024-03-26 10:43:18,338 epoch 6 - iter 36/95 - loss 0.10383378 - time (sec): 7.22 - samples/sec: 1787.46 - lr: 0.000016 - momentum: 0.000000
2024-03-26 10:43:20,287 epoch 6 - iter 45/95 - loss 0.09688053 - time (sec): 9.17 - samples/sec: 1782.16 - lr: 0.000015 - momentum: 0.000000
2024-03-26 10:43:22,434 epoch 6 - iter 54/95 - loss 0.09239524 - time (sec): 11.31 - samples/sec: 1748.98 - lr: 0.000015 - momentum: 0.000000
2024-03-26 10:43:24,130 epoch 6 - iter 63/95 - loss 0.09428611 - time (sec): 13.01 - samples/sec: 1765.33 - lr: 0.000015 - momentum: 0.000000
2024-03-26 10:43:25,692 epoch 6 - iter 72/95 - loss 0.09316211 - time (sec): 14.57 - samples/sec: 1787.10 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:43:26,931 epoch 6 - iter 81/95 - loss 0.09128789 - time (sec): 15.81 - samples/sec: 1817.96 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:43:28,803 epoch 6 - iter 90/95 - loss 0.08841068 - time (sec): 17.68 - samples/sec: 1817.00 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:43:30,318 ----------------------------------------------------------------------------------------------------
2024-03-26 10:43:30,318 EPOCH 6 done: loss 0.0851 - lr: 0.000014
2024-03-26 10:43:31,226 DEV : loss 0.17975111305713654 - f1-score (micro avg) 0.9083
2024-03-26 10:43:31,227 saving best model
2024-03-26 10:43:31,659 ----------------------------------------------------------------------------------------------------
2024-03-26 10:43:33,339 epoch 7 - iter 9/95 - loss 0.04434295 - time (sec): 1.68 - samples/sec: 1875.20 - lr: 0.000013 - momentum: 0.000000
2024-03-26 10:43:34,833 epoch 7 - iter 18/95 - loss 0.05737186 - time (sec): 3.17 - samples/sec: 1854.04 - lr: 0.000013 - momentum: 0.000000
2024-03-26 10:43:36,131 epoch 7 - iter 27/95 - loss 0.07086475 - time (sec): 4.47 - samples/sec: 1894.14 - lr: 0.000013 - momentum: 0.000000
2024-03-26 10:43:38,374 epoch 7 - iter 36/95 - loss 0.06375980 - time (sec): 6.71 - samples/sec: 1893.08 - lr: 0.000012 - momentum: 0.000000
2024-03-26 10:43:40,286 epoch 7 - iter 45/95 - loss 0.07056595 - time (sec): 8.63 - samples/sec: 1887.67 - lr: 0.000012 - momentum: 0.000000
2024-03-26 10:43:41,972 epoch 7 - iter 54/95 - loss 0.06904809 - time (sec): 10.31 - samples/sec: 1880.46 - lr: 0.000012 - momentum: 0.000000
2024-03-26 10:43:43,526 epoch 7 - iter 63/95 - loss 0.06977752 - time (sec): 11.87 - samples/sec: 1899.40 - lr: 0.000011 - momentum: 0.000000
2024-03-26 10:43:45,039 epoch 7 - iter 72/95 - loss 0.06918325 - time (sec): 13.38 - samples/sec: 1889.29 - lr: 0.000011 - momentum: 0.000000
2024-03-26 10:43:47,746 epoch 7 - iter 81/95 - loss 0.06689062 - time (sec): 16.09 - samples/sec: 1826.35 - lr: 0.000011 - momentum: 0.000000
2024-03-26 10:43:49,350 epoch 7 - iter 90/95 - loss 0.06702086 - time (sec): 17.69 - samples/sec: 1835.80 - lr: 0.000010 - momentum: 0.000000
2024-03-26 10:43:50,524 ----------------------------------------------------------------------------------------------------
2024-03-26 10:43:50,524 EPOCH 7 done: loss 0.0651 - lr: 0.000010
2024-03-26 10:43:51,429 DEV : loss 0.1919691115617752 - f1-score (micro avg) 0.919
2024-03-26 10:43:51,431 saving best model
2024-03-26 10:43:51,886 ----------------------------------------------------------------------------------------------------
2024-03-26 10:43:54,039 epoch 8 - iter 9/95 - loss 0.06610781 - time (sec): 2.15 - samples/sec: 1570.14 - lr: 0.000010 - momentum: 0.000000
2024-03-26 10:43:55,548 epoch 8 - iter 18/95 - loss 0.04891073 - time (sec): 3.66 - samples/sec: 1666.75 - lr: 0.000010 - momentum: 0.000000
2024-03-26 10:43:57,528 epoch 8 - iter 27/95 - loss 0.04824918 - time (sec): 5.64 - samples/sec: 1739.20 - lr: 0.000009 - momentum: 0.000000
2024-03-26 10:43:59,502 epoch 8 - iter 36/95 - loss 0.04612903 - time (sec): 7.62 - samples/sec: 1767.94 - lr: 0.000009 - momentum: 0.000000
2024-03-26 10:44:00,922 epoch 8 - iter 45/95 - loss 0.04536822 - time (sec): 9.04 - samples/sec: 1821.45 - lr: 0.000009 - momentum: 0.000000
2024-03-26 10:44:02,407 epoch 8 - iter 54/95 - loss 0.04799100 - time (sec): 10.52 - samples/sec: 1888.93 - lr: 0.000008 - momentum: 0.000000
2024-03-26 10:44:03,975 epoch 8 - iter 63/95 - loss 0.05032246 - time (sec): 12.09 - samples/sec: 1881.30 - lr: 0.000008 - momentum: 0.000000
2024-03-26 10:44:06,059 epoch 8 - iter 72/95 - loss 0.04831321 - time (sec): 14.17 - samples/sec: 1847.42 - lr: 0.000008 - momentum: 0.000000
2024-03-26 10:44:07,625 epoch 8 - iter 81/95 - loss 0.04954977 - time (sec): 15.74 - samples/sec: 1870.96 - lr: 0.000007 - momentum: 0.000000
2024-03-26 10:44:09,704 epoch 8 - iter 90/95 - loss 0.05038584 - time (sec): 17.82 - samples/sec: 1845.36 - lr: 0.000007 - momentum: 0.000000
2024-03-26 10:44:10,340 ----------------------------------------------------------------------------------------------------
2024-03-26 10:44:10,340 EPOCH 8 done: loss 0.0513 - lr: 0.000007
2024-03-26 10:44:11,259 DEV : loss 0.18480534851551056 - f1-score (micro avg) 0.9234
2024-03-26 10:44:11,260 saving best model
2024-03-26 10:44:11,747 ----------------------------------------------------------------------------------------------------
2024-03-26 10:44:14,274 epoch 9 - iter 9/95 - loss 0.04107350 - time (sec): 2.52 - samples/sec: 1708.97 - lr: 0.000007 - momentum: 0.000000
2024-03-26 10:44:15,817 epoch 9 - iter 18/95 - loss 0.04278555 - time (sec): 4.07 - samples/sec: 1777.85 - lr: 0.000006 - momentum: 0.000000
2024-03-26 10:44:18,277 epoch 9 - iter 27/95 - loss 0.04284774 - time (sec): 6.53 - samples/sec: 1731.78 - lr: 0.000006 - momentum: 0.000000
2024-03-26 10:44:20,086 epoch 9 - iter 36/95 - loss 0.04627102 - time (sec): 8.34 - samples/sec: 1738.43 - lr: 0.000006 - momentum: 0.000000
2024-03-26 10:44:21,245 epoch 9 - iter 45/95 - loss 0.04508424 - time (sec): 9.50 - samples/sec: 1796.22 - lr: 0.000005 - momentum: 0.000000
2024-03-26 10:44:22,992 epoch 9 - iter 54/95 - loss 0.04164060 - time (sec): 11.24 - samples/sec: 1784.65 - lr: 0.000005 - momentum: 0.000000
2024-03-26 10:44:24,382 epoch 9 - iter 63/95 - loss 0.04372655 - time (sec): 12.63 - samples/sec: 1828.58 - lr: 0.000005 - momentum: 0.000000
2024-03-26 10:44:25,554 epoch 9 - iter 72/95 - loss 0.04325581 - time (sec): 13.80 - samples/sec: 1876.77 - lr: 0.000004 - momentum: 0.000000
2024-03-26 10:44:27,084 epoch 9 - iter 81/95 - loss 0.04077638 - time (sec): 15.33 - samples/sec: 1873.36 - lr: 0.000004 - momentum: 0.000000
2024-03-26 10:44:29,824 epoch 9 - iter 90/95 - loss 0.04197464 - time (sec): 18.07 - samples/sec: 1824.41 - lr: 0.000004 - momentum: 0.000000
2024-03-26 10:44:30,596 ----------------------------------------------------------------------------------------------------
2024-03-26 10:44:30,596 EPOCH 9 done: loss 0.0407 - lr: 0.000004
2024-03-26 10:44:31,501 DEV : loss 0.18239974975585938 - f1-score (micro avg) 0.9226
2024-03-26 10:44:31,502 ----------------------------------------------------------------------------------------------------
2024-03-26 10:44:33,951 epoch 10 - iter 9/95 - loss 0.04098225 - time (sec): 2.45 - samples/sec: 1648.42 - lr: 0.000003 - momentum: 0.000000
2024-03-26 10:44:35,523 epoch 10 - iter 18/95 - loss 0.03496454 - time (sec): 4.02 - samples/sec: 1734.57 - lr: 0.000003 - momentum: 0.000000
2024-03-26 10:44:37,487 epoch 10 - iter 27/95 - loss 0.03208139 - time (sec): 5.98 - samples/sec: 1684.20 - lr: 0.000003 - momentum: 0.000000
2024-03-26 10:44:39,570 epoch 10 - iter 36/95 - loss 0.03470194 - time (sec): 8.07 - samples/sec: 1691.68 - lr: 0.000002 - momentum: 0.000000
2024-03-26 10:44:41,433 epoch 10 - iter 45/95 - loss 0.03231506 - time (sec): 9.93 - samples/sec: 1708.14 - lr: 0.000002 - momentum: 0.000000
2024-03-26 10:44:42,579 epoch 10 - iter 54/95 - loss 0.03455335 - time (sec): 11.08 - samples/sec: 1768.88 - lr: 0.000002 - momentum: 0.000000
2024-03-26 10:44:44,201 epoch 10 - iter 63/95 - loss 0.03741024 - time (sec): 12.70 - samples/sec: 1792.16 - lr: 0.000001 - momentum: 0.000000
2024-03-26 10:44:46,014 epoch 10 - iter 72/95 - loss 0.03685135 - time (sec): 14.51 - samples/sec: 1782.77 - lr: 0.000001 - momentum: 0.000000
2024-03-26 10:44:47,684 epoch 10 - iter 81/95 - loss 0.03873599 - time (sec): 16.18 - samples/sec: 1794.43 - lr: 0.000001 - momentum: 0.000000
2024-03-26 10:44:50,462 epoch 10 - iter 90/95 - loss 0.03651296 - time (sec): 18.96 - samples/sec: 1758.44 - lr: 0.000000 - momentum: 0.000000
2024-03-26 10:44:51,025 ----------------------------------------------------------------------------------------------------
2024-03-26 10:44:51,026 EPOCH 10 done: loss 0.0368 - lr: 0.000000
2024-03-26 10:44:51,950 DEV : loss 0.18397146463394165 - f1-score (micro avg) 0.9263
2024-03-26 10:44:51,952 saving best model
2024-03-26 10:44:52,689 ----------------------------------------------------------------------------------------------------
2024-03-26 10:44:52,689 Loading model from best epoch ...
2024-03-26 10:44:53,611 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 10:44:54,368
Results:
- F-score (micro) 0.9063
- F-score (macro) 0.6881
- Accuracy 0.8322
By class:
precision recall f1-score support
Unternehmen 0.9219 0.8872 0.9042 266
Auslagerung 0.8638 0.8916 0.8775 249
Ort 0.9565 0.9851 0.9706 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.9035 0.9091 0.9063 649
macro avg 0.6856 0.6910 0.6881 649
weighted avg 0.9068 0.9091 0.9077 649
2024-03-26 10:44:54,369 ----------------------------------------------------------------------------------------------------
|