Upload ./training.log with huggingface_hub
Browse files- training.log +266 -0
training.log
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-03-26 11:45:43,177 ----------------------------------------------------------------------------------------------------
|
2 |
+
2024-03-26 11:45:43,177 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(30001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=17, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2024-03-26 11:45:43,178 ----------------------------------------------------------------------------------------------------
|
51 |
+
2024-03-26 11:45:43,178 Corpus: 758 train + 94 dev + 96 test sentences
|
52 |
+
2024-03-26 11:45:43,178 ----------------------------------------------------------------------------------------------------
|
53 |
+
2024-03-26 11:45:43,178 Train: 758 sentences
|
54 |
+
2024-03-26 11:45:43,178 (train_with_dev=False, train_with_test=False)
|
55 |
+
2024-03-26 11:45:43,178 ----------------------------------------------------------------------------------------------------
|
56 |
+
2024-03-26 11:45:43,178 Training Params:
|
57 |
+
2024-03-26 11:45:43,178 - learning_rate: "3e-05"
|
58 |
+
2024-03-26 11:45:43,178 - mini_batch_size: "16"
|
59 |
+
2024-03-26 11:45:43,178 - max_epochs: "10"
|
60 |
+
2024-03-26 11:45:43,178 - shuffle: "True"
|
61 |
+
2024-03-26 11:45:43,178 ----------------------------------------------------------------------------------------------------
|
62 |
+
2024-03-26 11:45:43,178 Plugins:
|
63 |
+
2024-03-26 11:45:43,178 - TensorboardLogger
|
64 |
+
2024-03-26 11:45:43,178 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2024-03-26 11:45:43,178 ----------------------------------------------------------------------------------------------------
|
66 |
+
2024-03-26 11:45:43,178 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2024-03-26 11:45:43,178 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2024-03-26 11:45:43,178 ----------------------------------------------------------------------------------------------------
|
69 |
+
2024-03-26 11:45:43,178 Computation:
|
70 |
+
2024-03-26 11:45:43,178 - compute on device: cuda:0
|
71 |
+
2024-03-26 11:45:43,178 - embedding storage: none
|
72 |
+
2024-03-26 11:45:43,178 ----------------------------------------------------------------------------------------------------
|
73 |
+
2024-03-26 11:45:43,178 Model training base path: "flair-co-funer-german_bert_base-bs16-e10-lr3e-05-4"
|
74 |
+
2024-03-26 11:45:43,178 ----------------------------------------------------------------------------------------------------
|
75 |
+
2024-03-26 11:45:43,178 ----------------------------------------------------------------------------------------------------
|
76 |
+
2024-03-26 11:45:43,178 Logging anything other than scalars to TensorBoard is currently not supported.
|
77 |
+
2024-03-26 11:45:44,651 epoch 1 - iter 4/48 - loss 3.09549930 - time (sec): 1.47 - samples/sec: 1771.64 - lr: 0.000002 - momentum: 0.000000
|
78 |
+
2024-03-26 11:45:46,599 epoch 1 - iter 8/48 - loss 3.05860497 - time (sec): 3.42 - samples/sec: 1497.54 - lr: 0.000004 - momentum: 0.000000
|
79 |
+
2024-03-26 11:45:47,991 epoch 1 - iter 12/48 - loss 2.97301780 - time (sec): 4.81 - samples/sec: 1517.11 - lr: 0.000007 - momentum: 0.000000
|
80 |
+
2024-03-26 11:45:50,619 epoch 1 - iter 16/48 - loss 2.81904351 - time (sec): 7.44 - samples/sec: 1437.84 - lr: 0.000009 - momentum: 0.000000
|
81 |
+
2024-03-26 11:45:52,789 epoch 1 - iter 20/48 - loss 2.69072216 - time (sec): 9.61 - samples/sec: 1425.29 - lr: 0.000012 - momentum: 0.000000
|
82 |
+
2024-03-26 11:45:55,470 epoch 1 - iter 24/48 - loss 2.55781908 - time (sec): 12.29 - samples/sec: 1376.96 - lr: 0.000014 - momentum: 0.000000
|
83 |
+
2024-03-26 11:45:58,068 epoch 1 - iter 28/48 - loss 2.43219709 - time (sec): 14.89 - samples/sec: 1362.47 - lr: 0.000017 - momentum: 0.000000
|
84 |
+
2024-03-26 11:45:59,951 epoch 1 - iter 32/48 - loss 2.34102141 - time (sec): 16.77 - samples/sec: 1363.77 - lr: 0.000019 - momentum: 0.000000
|
85 |
+
2024-03-26 11:46:00,897 epoch 1 - iter 36/48 - loss 2.26816176 - time (sec): 17.72 - samples/sec: 1409.81 - lr: 0.000022 - momentum: 0.000000
|
86 |
+
2024-03-26 11:46:02,804 epoch 1 - iter 40/48 - loss 2.17382454 - time (sec): 19.63 - samples/sec: 1419.19 - lr: 0.000024 - momentum: 0.000000
|
87 |
+
2024-03-26 11:46:04,923 epoch 1 - iter 44/48 - loss 2.06590701 - time (sec): 21.74 - samples/sec: 1436.16 - lr: 0.000027 - momentum: 0.000000
|
88 |
+
2024-03-26 11:46:06,685 epoch 1 - iter 48/48 - loss 1.97932119 - time (sec): 23.51 - samples/sec: 1466.46 - lr: 0.000029 - momentum: 0.000000
|
89 |
+
2024-03-26 11:46:06,686 ----------------------------------------------------------------------------------------------------
|
90 |
+
2024-03-26 11:46:06,686 EPOCH 1 done: loss 1.9793 - lr: 0.000029
|
91 |
+
2024-03-26 11:46:07,557 DEV : loss 0.7610657215118408 - f1-score (micro avg) 0.523
|
92 |
+
2024-03-26 11:46:07,559 saving best model
|
93 |
+
2024-03-26 11:46:07,873 ----------------------------------------------------------------------------------------------------
|
94 |
+
2024-03-26 11:46:09,182 epoch 2 - iter 4/48 - loss 1.00588389 - time (sec): 1.31 - samples/sec: 1809.27 - lr: 0.000030 - momentum: 0.000000
|
95 |
+
2024-03-26 11:46:11,520 epoch 2 - iter 8/48 - loss 0.79773619 - time (sec): 3.65 - samples/sec: 1496.17 - lr: 0.000030 - momentum: 0.000000
|
96 |
+
2024-03-26 11:46:13,365 epoch 2 - iter 12/48 - loss 0.75438594 - time (sec): 5.49 - samples/sec: 1551.86 - lr: 0.000029 - momentum: 0.000000
|
97 |
+
2024-03-26 11:46:15,862 epoch 2 - iter 16/48 - loss 0.69088754 - time (sec): 7.99 - samples/sec: 1412.25 - lr: 0.000029 - momentum: 0.000000
|
98 |
+
2024-03-26 11:46:19,281 epoch 2 - iter 20/48 - loss 0.63021194 - time (sec): 11.41 - samples/sec: 1293.37 - lr: 0.000029 - momentum: 0.000000
|
99 |
+
2024-03-26 11:46:20,807 epoch 2 - iter 24/48 - loss 0.62522090 - time (sec): 12.93 - samples/sec: 1348.63 - lr: 0.000028 - momentum: 0.000000
|
100 |
+
2024-03-26 11:46:23,493 epoch 2 - iter 28/48 - loss 0.60290004 - time (sec): 15.62 - samples/sec: 1325.52 - lr: 0.000028 - momentum: 0.000000
|
101 |
+
2024-03-26 11:46:26,244 epoch 2 - iter 32/48 - loss 0.57675820 - time (sec): 18.37 - samples/sec: 1328.72 - lr: 0.000028 - momentum: 0.000000
|
102 |
+
2024-03-26 11:46:28,390 epoch 2 - iter 36/48 - loss 0.56861350 - time (sec): 20.52 - samples/sec: 1318.12 - lr: 0.000028 - momentum: 0.000000
|
103 |
+
2024-03-26 11:46:30,965 epoch 2 - iter 40/48 - loss 0.54982812 - time (sec): 23.09 - samples/sec: 1307.11 - lr: 0.000027 - momentum: 0.000000
|
104 |
+
2024-03-26 11:46:32,094 epoch 2 - iter 44/48 - loss 0.53992976 - time (sec): 24.22 - samples/sec: 1338.69 - lr: 0.000027 - momentum: 0.000000
|
105 |
+
2024-03-26 11:46:33,278 epoch 2 - iter 48/48 - loss 0.52605631 - time (sec): 25.40 - samples/sec: 1356.93 - lr: 0.000027 - momentum: 0.000000
|
106 |
+
2024-03-26 11:46:33,278 ----------------------------------------------------------------------------------------------------
|
107 |
+
2024-03-26 11:46:33,278 EPOCH 2 done: loss 0.5261 - lr: 0.000027
|
108 |
+
2024-03-26 11:46:34,230 DEV : loss 0.3057578504085541 - f1-score (micro avg) 0.8021
|
109 |
+
2024-03-26 11:46:34,232 saving best model
|
110 |
+
2024-03-26 11:46:34,699 ----------------------------------------------------------------------------------------------------
|
111 |
+
2024-03-26 11:46:36,914 epoch 3 - iter 4/48 - loss 0.30145275 - time (sec): 2.21 - samples/sec: 1108.67 - lr: 0.000026 - momentum: 0.000000
|
112 |
+
2024-03-26 11:46:38,470 epoch 3 - iter 8/48 - loss 0.25277524 - time (sec): 3.77 - samples/sec: 1270.27 - lr: 0.000026 - momentum: 0.000000
|
113 |
+
2024-03-26 11:46:41,075 epoch 3 - iter 12/48 - loss 0.26402459 - time (sec): 6.38 - samples/sec: 1220.17 - lr: 0.000026 - momentum: 0.000000
|
114 |
+
2024-03-26 11:46:43,227 epoch 3 - iter 16/48 - loss 0.26444662 - time (sec): 8.53 - samples/sec: 1250.49 - lr: 0.000026 - momentum: 0.000000
|
115 |
+
2024-03-26 11:46:45,257 epoch 3 - iter 20/48 - loss 0.26227190 - time (sec): 10.56 - samples/sec: 1311.31 - lr: 0.000025 - momentum: 0.000000
|
116 |
+
2024-03-26 11:46:47,499 epoch 3 - iter 24/48 - loss 0.25621355 - time (sec): 12.80 - samples/sec: 1335.61 - lr: 0.000025 - momentum: 0.000000
|
117 |
+
2024-03-26 11:46:50,084 epoch 3 - iter 28/48 - loss 0.24877474 - time (sec): 15.38 - samples/sec: 1296.51 - lr: 0.000025 - momentum: 0.000000
|
118 |
+
2024-03-26 11:46:52,756 epoch 3 - iter 32/48 - loss 0.24041754 - time (sec): 18.06 - samples/sec: 1273.36 - lr: 0.000025 - momentum: 0.000000
|
119 |
+
2024-03-26 11:46:54,934 epoch 3 - iter 36/48 - loss 0.23832241 - time (sec): 20.23 - samples/sec: 1279.35 - lr: 0.000024 - momentum: 0.000000
|
120 |
+
2024-03-26 11:46:57,306 epoch 3 - iter 40/48 - loss 0.24630100 - time (sec): 22.61 - samples/sec: 1296.33 - lr: 0.000024 - momentum: 0.000000
|
121 |
+
2024-03-26 11:46:59,921 epoch 3 - iter 44/48 - loss 0.24001606 - time (sec): 25.22 - samples/sec: 1280.99 - lr: 0.000024 - momentum: 0.000000
|
122 |
+
2024-03-26 11:47:01,444 epoch 3 - iter 48/48 - loss 0.24260838 - time (sec): 26.74 - samples/sec: 1288.93 - lr: 0.000023 - momentum: 0.000000
|
123 |
+
2024-03-26 11:47:01,444 ----------------------------------------------------------------------------------------------------
|
124 |
+
2024-03-26 11:47:01,444 EPOCH 3 done: loss 0.2426 - lr: 0.000023
|
125 |
+
2024-03-26 11:47:02,396 DEV : loss 0.24360495805740356 - f1-score (micro avg) 0.8595
|
126 |
+
2024-03-26 11:47:02,398 saving best model
|
127 |
+
2024-03-26 11:47:02,856 ----------------------------------------------------------------------------------------------------
|
128 |
+
2024-03-26 11:47:05,914 epoch 4 - iter 4/48 - loss 0.12795448 - time (sec): 3.06 - samples/sec: 1192.54 - lr: 0.000023 - momentum: 0.000000
|
129 |
+
2024-03-26 11:47:07,229 epoch 4 - iter 8/48 - loss 0.14859439 - time (sec): 4.37 - samples/sec: 1345.42 - lr: 0.000023 - momentum: 0.000000
|
130 |
+
2024-03-26 11:47:09,386 epoch 4 - iter 12/48 - loss 0.16381198 - time (sec): 6.53 - samples/sec: 1412.84 - lr: 0.000023 - momentum: 0.000000
|
131 |
+
2024-03-26 11:47:12,101 epoch 4 - iter 16/48 - loss 0.16311786 - time (sec): 9.24 - samples/sec: 1317.99 - lr: 0.000022 - momentum: 0.000000
|
132 |
+
2024-03-26 11:47:13,115 epoch 4 - iter 20/48 - loss 0.16463006 - time (sec): 10.26 - samples/sec: 1400.38 - lr: 0.000022 - momentum: 0.000000
|
133 |
+
2024-03-26 11:47:14,580 epoch 4 - iter 24/48 - loss 0.16449895 - time (sec): 11.72 - samples/sec: 1441.92 - lr: 0.000022 - momentum: 0.000000
|
134 |
+
2024-03-26 11:47:17,752 epoch 4 - iter 28/48 - loss 0.15737998 - time (sec): 14.89 - samples/sec: 1355.04 - lr: 0.000022 - momentum: 0.000000
|
135 |
+
2024-03-26 11:47:20,326 epoch 4 - iter 32/48 - loss 0.16722060 - time (sec): 17.47 - samples/sec: 1346.27 - lr: 0.000021 - momentum: 0.000000
|
136 |
+
2024-03-26 11:47:21,933 epoch 4 - iter 36/48 - loss 0.16726320 - time (sec): 19.08 - samples/sec: 1377.55 - lr: 0.000021 - momentum: 0.000000
|
137 |
+
2024-03-26 11:47:23,982 epoch 4 - iter 40/48 - loss 0.16404076 - time (sec): 21.12 - samples/sec: 1391.74 - lr: 0.000021 - momentum: 0.000000
|
138 |
+
2024-03-26 11:47:25,933 epoch 4 - iter 44/48 - loss 0.16294098 - time (sec): 23.08 - samples/sec: 1405.54 - lr: 0.000020 - momentum: 0.000000
|
139 |
+
2024-03-26 11:47:27,014 epoch 4 - iter 48/48 - loss 0.16439185 - time (sec): 24.16 - samples/sec: 1427.00 - lr: 0.000020 - momentum: 0.000000
|
140 |
+
2024-03-26 11:47:27,015 ----------------------------------------------------------------------------------------------------
|
141 |
+
2024-03-26 11:47:27,015 EPOCH 4 done: loss 0.1644 - lr: 0.000020
|
142 |
+
2024-03-26 11:47:27,966 DEV : loss 0.23152601718902588 - f1-score (micro avg) 0.8802
|
143 |
+
2024-03-26 11:47:27,968 saving best model
|
144 |
+
2024-03-26 11:47:28,459 ----------------------------------------------------------------------------------------------------
|
145 |
+
2024-03-26 11:47:29,577 epoch 5 - iter 4/48 - loss 0.19052126 - time (sec): 1.11 - samples/sec: 2287.23 - lr: 0.000020 - momentum: 0.000000
|
146 |
+
2024-03-26 11:47:31,576 epoch 5 - iter 8/48 - loss 0.17349732 - time (sec): 3.11 - samples/sec: 1665.56 - lr: 0.000020 - momentum: 0.000000
|
147 |
+
2024-03-26 11:47:33,746 epoch 5 - iter 12/48 - loss 0.15486907 - time (sec): 5.28 - samples/sec: 1515.53 - lr: 0.000019 - momentum: 0.000000
|
148 |
+
2024-03-26 11:47:36,149 epoch 5 - iter 16/48 - loss 0.14690282 - time (sec): 7.68 - samples/sec: 1443.38 - lr: 0.000019 - momentum: 0.000000
|
149 |
+
2024-03-26 11:47:38,420 epoch 5 - iter 20/48 - loss 0.14271247 - time (sec): 9.95 - samples/sec: 1374.60 - lr: 0.000019 - momentum: 0.000000
|
150 |
+
2024-03-26 11:47:40,647 epoch 5 - iter 24/48 - loss 0.13760899 - time (sec): 12.18 - samples/sec: 1394.70 - lr: 0.000018 - momentum: 0.000000
|
151 |
+
2024-03-26 11:47:42,374 epoch 5 - iter 28/48 - loss 0.13435191 - time (sec): 13.91 - samples/sec: 1415.02 - lr: 0.000018 - momentum: 0.000000
|
152 |
+
2024-03-26 11:47:44,537 epoch 5 - iter 32/48 - loss 0.12594520 - time (sec): 16.07 - samples/sec: 1437.44 - lr: 0.000018 - momentum: 0.000000
|
153 |
+
2024-03-26 11:47:46,006 epoch 5 - iter 36/48 - loss 0.12460472 - time (sec): 17.54 - samples/sec: 1459.35 - lr: 0.000018 - momentum: 0.000000
|
154 |
+
2024-03-26 11:47:48,705 epoch 5 - iter 40/48 - loss 0.11980810 - time (sec): 20.24 - samples/sec: 1424.31 - lr: 0.000017 - momentum: 0.000000
|
155 |
+
2024-03-26 11:47:51,717 epoch 5 - iter 44/48 - loss 0.11945876 - time (sec): 23.25 - samples/sec: 1377.39 - lr: 0.000017 - momentum: 0.000000
|
156 |
+
2024-03-26 11:47:53,286 epoch 5 - iter 48/48 - loss 0.12163729 - time (sec): 24.82 - samples/sec: 1388.84 - lr: 0.000017 - momentum: 0.000000
|
157 |
+
2024-03-26 11:47:53,286 ----------------------------------------------------------------------------------------------------
|
158 |
+
2024-03-26 11:47:53,286 EPOCH 5 done: loss 0.1216 - lr: 0.000017
|
159 |
+
2024-03-26 11:47:54,267 DEV : loss 0.18433180451393127 - f1-score (micro avg) 0.8884
|
160 |
+
2024-03-26 11:47:54,269 saving best model
|
161 |
+
2024-03-26 11:47:54,756 ----------------------------------------------------------------------------------------------------
|
162 |
+
2024-03-26 11:47:56,703 epoch 6 - iter 4/48 - loss 0.13051442 - time (sec): 1.95 - samples/sec: 1509.64 - lr: 0.000017 - momentum: 0.000000
|
163 |
+
2024-03-26 11:47:58,475 epoch 6 - iter 8/48 - loss 0.10157641 - time (sec): 3.72 - samples/sec: 1558.95 - lr: 0.000016 - momentum: 0.000000
|
164 |
+
2024-03-26 11:48:00,861 epoch 6 - iter 12/48 - loss 0.10287141 - time (sec): 6.10 - samples/sec: 1444.47 - lr: 0.000016 - momentum: 0.000000
|
165 |
+
2024-03-26 11:48:02,495 epoch 6 - iter 16/48 - loss 0.09403836 - time (sec): 7.74 - samples/sec: 1464.25 - lr: 0.000016 - momentum: 0.000000
|
166 |
+
2024-03-26 11:48:05,189 epoch 6 - iter 20/48 - loss 0.08683212 - time (sec): 10.43 - samples/sec: 1377.07 - lr: 0.000015 - momentum: 0.000000
|
167 |
+
2024-03-26 11:48:07,268 epoch 6 - iter 24/48 - loss 0.08891366 - time (sec): 12.51 - samples/sec: 1397.92 - lr: 0.000015 - momentum: 0.000000
|
168 |
+
2024-03-26 11:48:10,008 epoch 6 - iter 28/48 - loss 0.08855013 - time (sec): 15.25 - samples/sec: 1372.63 - lr: 0.000015 - momentum: 0.000000
|
169 |
+
2024-03-26 11:48:12,127 epoch 6 - iter 32/48 - loss 0.08678004 - time (sec): 17.37 - samples/sec: 1352.96 - lr: 0.000015 - momentum: 0.000000
|
170 |
+
2024-03-26 11:48:13,293 epoch 6 - iter 36/48 - loss 0.08791381 - time (sec): 18.54 - samples/sec: 1399.47 - lr: 0.000014 - momentum: 0.000000
|
171 |
+
2024-03-26 11:48:15,565 epoch 6 - iter 40/48 - loss 0.08879619 - time (sec): 20.81 - samples/sec: 1389.61 - lr: 0.000014 - momentum: 0.000000
|
172 |
+
2024-03-26 11:48:17,262 epoch 6 - iter 44/48 - loss 0.09174772 - time (sec): 22.50 - samples/sec: 1410.84 - lr: 0.000014 - momentum: 0.000000
|
173 |
+
2024-03-26 11:48:19,176 epoch 6 - iter 48/48 - loss 0.08921771 - time (sec): 24.42 - samples/sec: 1411.69 - lr: 0.000014 - momentum: 0.000000
|
174 |
+
2024-03-26 11:48:19,176 ----------------------------------------------------------------------------------------------------
|
175 |
+
2024-03-26 11:48:19,176 EPOCH 6 done: loss 0.0892 - lr: 0.000014
|
176 |
+
2024-03-26 11:48:20,141 DEV : loss 0.1853693574666977 - f1-score (micro avg) 0.9087
|
177 |
+
2024-03-26 11:48:20,143 saving best model
|
178 |
+
2024-03-26 11:48:20,630 ----------------------------------------------------------------------------------------------------
|
179 |
+
2024-03-26 11:48:22,266 epoch 7 - iter 4/48 - loss 0.06603823 - time (sec): 1.64 - samples/sec: 1709.98 - lr: 0.000013 - momentum: 0.000000
|
180 |
+
2024-03-26 11:48:24,417 epoch 7 - iter 8/48 - loss 0.05619435 - time (sec): 3.79 - samples/sec: 1616.26 - lr: 0.000013 - momentum: 0.000000
|
181 |
+
2024-03-26 11:48:26,762 epoch 7 - iter 12/48 - loss 0.05569263 - time (sec): 6.13 - samples/sec: 1436.63 - lr: 0.000013 - momentum: 0.000000
|
182 |
+
2024-03-26 11:48:28,025 epoch 7 - iter 16/48 - loss 0.06293055 - time (sec): 7.39 - samples/sec: 1522.02 - lr: 0.000012 - momentum: 0.000000
|
183 |
+
2024-03-26 11:48:30,201 epoch 7 - iter 20/48 - loss 0.06307589 - time (sec): 9.57 - samples/sec: 1498.89 - lr: 0.000012 - momentum: 0.000000
|
184 |
+
2024-03-26 11:48:31,777 epoch 7 - iter 24/48 - loss 0.06017691 - time (sec): 11.15 - samples/sec: 1544.12 - lr: 0.000012 - momentum: 0.000000
|
185 |
+
2024-03-26 11:48:33,986 epoch 7 - iter 28/48 - loss 0.06081892 - time (sec): 13.36 - samples/sec: 1503.01 - lr: 0.000012 - momentum: 0.000000
|
186 |
+
2024-03-26 11:48:36,785 epoch 7 - iter 32/48 - loss 0.06314787 - time (sec): 16.16 - samples/sec: 1441.57 - lr: 0.000011 - momentum: 0.000000
|
187 |
+
2024-03-26 11:48:38,902 epoch 7 - iter 36/48 - loss 0.06250353 - time (sec): 18.27 - samples/sec: 1436.17 - lr: 0.000011 - momentum: 0.000000
|
188 |
+
2024-03-26 11:48:40,055 epoch 7 - iter 40/48 - loss 0.06618433 - time (sec): 19.43 - samples/sec: 1467.11 - lr: 0.000011 - momentum: 0.000000
|
189 |
+
2024-03-26 11:48:42,708 epoch 7 - iter 44/48 - loss 0.06737787 - time (sec): 22.08 - samples/sec: 1452.17 - lr: 0.000010 - momentum: 0.000000
|
190 |
+
2024-03-26 11:48:43,879 epoch 7 - iter 48/48 - loss 0.06792919 - time (sec): 23.25 - samples/sec: 1482.72 - lr: 0.000010 - momentum: 0.000000
|
191 |
+
2024-03-26 11:48:43,880 ----------------------------------------------------------------------------------------------------
|
192 |
+
2024-03-26 11:48:43,880 EPOCH 7 done: loss 0.0679 - lr: 0.000010
|
193 |
+
2024-03-26 11:48:44,827 DEV : loss 0.18232010304927826 - f1-score (micro avg) 0.91
|
194 |
+
2024-03-26 11:48:44,829 saving best model
|
195 |
+
2024-03-26 11:48:45,300 ----------------------------------------------------------------------------------------------------
|
196 |
+
2024-03-26 11:48:47,467 epoch 8 - iter 4/48 - loss 0.03714663 - time (sec): 2.16 - samples/sec: 1280.39 - lr: 0.000010 - momentum: 0.000000
|
197 |
+
2024-03-26 11:48:50,167 epoch 8 - iter 8/48 - loss 0.03361336 - time (sec): 4.87 - samples/sec: 1241.21 - lr: 0.000010 - momentum: 0.000000
|
198 |
+
2024-03-26 11:48:51,850 epoch 8 - iter 12/48 - loss 0.03532371 - time (sec): 6.55 - samples/sec: 1295.03 - lr: 0.000009 - momentum: 0.000000
|
199 |
+
2024-03-26 11:48:54,494 epoch 8 - iter 16/48 - loss 0.04333594 - time (sec): 9.19 - samples/sec: 1252.38 - lr: 0.000009 - momentum: 0.000000
|
200 |
+
2024-03-26 11:48:56,236 epoch 8 - iter 20/48 - loss 0.04632785 - time (sec): 10.93 - samples/sec: 1299.41 - lr: 0.000009 - momentum: 0.000000
|
201 |
+
2024-03-26 11:48:57,768 epoch 8 - iter 24/48 - loss 0.05319808 - time (sec): 12.47 - samples/sec: 1363.58 - lr: 0.000009 - momentum: 0.000000
|
202 |
+
2024-03-26 11:48:59,674 epoch 8 - iter 28/48 - loss 0.05657064 - time (sec): 14.37 - samples/sec: 1387.59 - lr: 0.000008 - momentum: 0.000000
|
203 |
+
2024-03-26 11:49:02,385 epoch 8 - iter 32/48 - loss 0.05777782 - time (sec): 17.08 - samples/sec: 1375.19 - lr: 0.000008 - momentum: 0.000000
|
204 |
+
2024-03-26 11:49:04,885 epoch 8 - iter 36/48 - loss 0.05931562 - time (sec): 19.58 - samples/sec: 1365.05 - lr: 0.000008 - momentum: 0.000000
|
205 |
+
2024-03-26 11:49:07,154 epoch 8 - iter 40/48 - loss 0.05882360 - time (sec): 21.85 - samples/sec: 1346.48 - lr: 0.000007 - momentum: 0.000000
|
206 |
+
2024-03-26 11:49:09,580 epoch 8 - iter 44/48 - loss 0.05703173 - time (sec): 24.28 - samples/sec: 1330.58 - lr: 0.000007 - momentum: 0.000000
|
207 |
+
2024-03-26 11:49:11,182 epoch 8 - iter 48/48 - loss 0.05700452 - time (sec): 25.88 - samples/sec: 1331.98 - lr: 0.000007 - momentum: 0.000000
|
208 |
+
2024-03-26 11:49:11,182 ----------------------------------------------------------------------------------------------------
|
209 |
+
2024-03-26 11:49:11,182 EPOCH 8 done: loss 0.0570 - lr: 0.000007
|
210 |
+
2024-03-26 11:49:12,150 DEV : loss 0.1904592365026474 - f1-score (micro avg) 0.9126
|
211 |
+
2024-03-26 11:49:12,153 saving best model
|
212 |
+
2024-03-26 11:49:12,624 ----------------------------------------------------------------------------------------------------
|
213 |
+
2024-03-26 11:49:14,556 epoch 9 - iter 4/48 - loss 0.05954110 - time (sec): 1.93 - samples/sec: 1495.61 - lr: 0.000007 - momentum: 0.000000
|
214 |
+
2024-03-26 11:49:17,841 epoch 9 - iter 8/48 - loss 0.05659017 - time (sec): 5.22 - samples/sec: 1206.66 - lr: 0.000006 - momentum: 0.000000
|
215 |
+
2024-03-26 11:49:19,553 epoch 9 - iter 12/48 - loss 0.04714393 - time (sec): 6.93 - samples/sec: 1248.33 - lr: 0.000006 - momentum: 0.000000
|
216 |
+
2024-03-26 11:49:21,495 epoch 9 - iter 16/48 - loss 0.05412922 - time (sec): 8.87 - samples/sec: 1288.76 - lr: 0.000006 - momentum: 0.000000
|
217 |
+
2024-03-26 11:49:24,385 epoch 9 - iter 20/48 - loss 0.04842308 - time (sec): 11.76 - samples/sec: 1262.88 - lr: 0.000006 - momentum: 0.000000
|
218 |
+
2024-03-26 11:49:25,948 epoch 9 - iter 24/48 - loss 0.04794347 - time (sec): 13.32 - samples/sec: 1309.55 - lr: 0.000005 - momentum: 0.000000
|
219 |
+
2024-03-26 11:49:27,975 epoch 9 - iter 28/48 - loss 0.05034416 - time (sec): 15.35 - samples/sec: 1330.81 - lr: 0.000005 - momentum: 0.000000
|
220 |
+
2024-03-26 11:49:30,408 epoch 9 - iter 32/48 - loss 0.04906075 - time (sec): 17.78 - samples/sec: 1306.28 - lr: 0.000005 - momentum: 0.000000
|
221 |
+
2024-03-26 11:49:31,739 epoch 9 - iter 36/48 - loss 0.05395636 - time (sec): 19.11 - samples/sec: 1337.37 - lr: 0.000004 - momentum: 0.000000
|
222 |
+
2024-03-26 11:49:35,032 epoch 9 - iter 40/48 - loss 0.05096711 - time (sec): 22.41 - samples/sec: 1291.46 - lr: 0.000004 - momentum: 0.000000
|
223 |
+
2024-03-26 11:49:37,174 epoch 9 - iter 44/48 - loss 0.04799635 - time (sec): 24.55 - samples/sec: 1315.65 - lr: 0.000004 - momentum: 0.000000
|
224 |
+
2024-03-26 11:49:38,168 epoch 9 - iter 48/48 - loss 0.04898665 - time (sec): 25.54 - samples/sec: 1349.54 - lr: 0.000004 - momentum: 0.000000
|
225 |
+
2024-03-26 11:49:38,168 ----------------------------------------------------------------------------------------------------
|
226 |
+
2024-03-26 11:49:38,168 EPOCH 9 done: loss 0.0490 - lr: 0.000004
|
227 |
+
2024-03-26 11:49:39,113 DEV : loss 0.18231666088104248 - f1-score (micro avg) 0.9251
|
228 |
+
2024-03-26 11:49:39,114 saving best model
|
229 |
+
2024-03-26 11:49:39,563 ----------------------------------------------------------------------------------------------------
|
230 |
+
2024-03-26 11:49:41,526 epoch 10 - iter 4/48 - loss 0.05551802 - time (sec): 1.96 - samples/sec: 1317.05 - lr: 0.000003 - momentum: 0.000000
|
231 |
+
2024-03-26 11:49:44,390 epoch 10 - iter 8/48 - loss 0.03666070 - time (sec): 4.83 - samples/sec: 1198.44 - lr: 0.000003 - momentum: 0.000000
|
232 |
+
2024-03-26 11:49:46,447 epoch 10 - iter 12/48 - loss 0.04190061 - time (sec): 6.88 - samples/sec: 1265.75 - lr: 0.000003 - momentum: 0.000000
|
233 |
+
2024-03-26 11:49:48,559 epoch 10 - iter 16/48 - loss 0.04315321 - time (sec): 9.00 - samples/sec: 1352.32 - lr: 0.000002 - momentum: 0.000000
|
234 |
+
2024-03-26 11:49:49,427 epoch 10 - iter 20/48 - loss 0.04114819 - time (sec): 9.86 - samples/sec: 1431.18 - lr: 0.000002 - momentum: 0.000000
|
235 |
+
2024-03-26 11:49:51,170 epoch 10 - iter 24/48 - loss 0.04045979 - time (sec): 11.61 - samples/sec: 1457.39 - lr: 0.000002 - momentum: 0.000000
|
236 |
+
2024-03-26 11:49:52,116 epoch 10 - iter 28/48 - loss 0.03995345 - time (sec): 12.55 - samples/sec: 1522.22 - lr: 0.000002 - momentum: 0.000000
|
237 |
+
2024-03-26 11:49:54,497 epoch 10 - iter 32/48 - loss 0.03875589 - time (sec): 14.93 - samples/sec: 1489.79 - lr: 0.000001 - momentum: 0.000000
|
238 |
+
2024-03-26 11:49:57,098 epoch 10 - iter 36/48 - loss 0.04305678 - time (sec): 17.53 - samples/sec: 1453.98 - lr: 0.000001 - momentum: 0.000000
|
239 |
+
2024-03-26 11:49:59,095 epoch 10 - iter 40/48 - loss 0.04511330 - time (sec): 19.53 - samples/sec: 1444.56 - lr: 0.000001 - momentum: 0.000000
|
240 |
+
2024-03-26 11:50:01,791 epoch 10 - iter 44/48 - loss 0.04429458 - time (sec): 22.23 - samples/sec: 1430.59 - lr: 0.000001 - momentum: 0.000000
|
241 |
+
2024-03-26 11:50:03,422 epoch 10 - iter 48/48 - loss 0.04405461 - time (sec): 23.86 - samples/sec: 1444.82 - lr: 0.000000 - momentum: 0.000000
|
242 |
+
2024-03-26 11:50:03,423 ----------------------------------------------------------------------------------------------------
|
243 |
+
2024-03-26 11:50:03,423 EPOCH 10 done: loss 0.0441 - lr: 0.000000
|
244 |
+
2024-03-26 11:50:04,381 DEV : loss 0.18572011590003967 - f1-score (micro avg) 0.9186
|
245 |
+
2024-03-26 11:50:04,707 ----------------------------------------------------------------------------------------------------
|
246 |
+
2024-03-26 11:50:04,708 Loading model from best epoch ...
|
247 |
+
2024-03-26 11:50:05,626 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
|
248 |
+
2024-03-26 11:50:06,416
|
249 |
+
Results:
|
250 |
+
- F-score (micro) 0.9084
|
251 |
+
- F-score (macro) 0.6914
|
252 |
+
- Accuracy 0.8345
|
253 |
+
|
254 |
+
By class:
|
255 |
+
precision recall f1-score support
|
256 |
+
|
257 |
+
Unternehmen 0.9144 0.8835 0.8987 266
|
258 |
+
Auslagerung 0.8534 0.9116 0.8816 249
|
259 |
+
Ort 0.9779 0.9925 0.9852 134
|
260 |
+
Software 0.0000 0.0000 0.0000 0
|
261 |
+
|
262 |
+
micro avg 0.9002 0.9168 0.9084 649
|
263 |
+
macro avg 0.6864 0.6969 0.6914 649
|
264 |
+
weighted avg 0.9041 0.9168 0.9100 649
|
265 |
+
|
266 |
+
2024-03-26 11:50:06,416 ----------------------------------------------------------------------------------------------------
|