Upload ./training.log with huggingface_hub
Browse files- training.log +264 -0
training.log
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-03-26 11:50:32,184 ----------------------------------------------------------------------------------------------------
|
2 |
+
2024-03-26 11:50:32,184 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(30001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=17, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2024-03-26 11:50:32,185 ----------------------------------------------------------------------------------------------------
|
51 |
+
2024-03-26 11:50:32,185 Corpus: 758 train + 94 dev + 96 test sentences
|
52 |
+
2024-03-26 11:50:32,185 ----------------------------------------------------------------------------------------------------
|
53 |
+
2024-03-26 11:50:32,185 Train: 758 sentences
|
54 |
+
2024-03-26 11:50:32,185 (train_with_dev=False, train_with_test=False)
|
55 |
+
2024-03-26 11:50:32,185 ----------------------------------------------------------------------------------------------------
|
56 |
+
2024-03-26 11:50:32,185 Training Params:
|
57 |
+
2024-03-26 11:50:32,185 - learning_rate: "5e-05"
|
58 |
+
2024-03-26 11:50:32,185 - mini_batch_size: "16"
|
59 |
+
2024-03-26 11:50:32,185 - max_epochs: "10"
|
60 |
+
2024-03-26 11:50:32,185 - shuffle: "True"
|
61 |
+
2024-03-26 11:50:32,185 ----------------------------------------------------------------------------------------------------
|
62 |
+
2024-03-26 11:50:32,185 Plugins:
|
63 |
+
2024-03-26 11:50:32,185 - TensorboardLogger
|
64 |
+
2024-03-26 11:50:32,185 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2024-03-26 11:50:32,185 ----------------------------------------------------------------------------------------------------
|
66 |
+
2024-03-26 11:50:32,185 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2024-03-26 11:50:32,185 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2024-03-26 11:50:32,185 ----------------------------------------------------------------------------------------------------
|
69 |
+
2024-03-26 11:50:32,185 Computation:
|
70 |
+
2024-03-26 11:50:32,185 - compute on device: cuda:0
|
71 |
+
2024-03-26 11:50:32,185 - embedding storage: none
|
72 |
+
2024-03-26 11:50:32,185 ----------------------------------------------------------------------------------------------------
|
73 |
+
2024-03-26 11:50:32,185 Model training base path: "flair-co-funer-german_bert_base-bs16-e10-lr5e-05-4"
|
74 |
+
2024-03-26 11:50:32,185 ----------------------------------------------------------------------------------------------------
|
75 |
+
2024-03-26 11:50:32,185 ----------------------------------------------------------------------------------------------------
|
76 |
+
2024-03-26 11:50:32,185 Logging anything other than scalars to TensorBoard is currently not supported.
|
77 |
+
2024-03-26 11:50:33,652 epoch 1 - iter 4/48 - loss 3.09191904 - time (sec): 1.47 - samples/sec: 1778.87 - lr: 0.000003 - momentum: 0.000000
|
78 |
+
2024-03-26 11:50:35,595 epoch 1 - iter 8/48 - loss 3.02643970 - time (sec): 3.41 - samples/sec: 1502.31 - lr: 0.000007 - momentum: 0.000000
|
79 |
+
2024-03-26 11:50:36,980 epoch 1 - iter 12/48 - loss 2.89705049 - time (sec): 4.79 - samples/sec: 1522.91 - lr: 0.000011 - momentum: 0.000000
|
80 |
+
2024-03-26 11:50:39,603 epoch 1 - iter 16/48 - loss 2.67413210 - time (sec): 7.42 - samples/sec: 1442.39 - lr: 0.000016 - momentum: 0.000000
|
81 |
+
2024-03-26 11:50:41,764 epoch 1 - iter 20/48 - loss 2.51616525 - time (sec): 9.58 - samples/sec: 1430.08 - lr: 0.000020 - momentum: 0.000000
|
82 |
+
2024-03-26 11:50:44,429 epoch 1 - iter 24/48 - loss 2.37789495 - time (sec): 12.24 - samples/sec: 1382.39 - lr: 0.000024 - momentum: 0.000000
|
83 |
+
2024-03-26 11:50:47,019 epoch 1 - iter 28/48 - loss 2.24810861 - time (sec): 14.83 - samples/sec: 1367.59 - lr: 0.000028 - momentum: 0.000000
|
84 |
+
2024-03-26 11:50:48,900 epoch 1 - iter 32/48 - loss 2.14871723 - time (sec): 16.71 - samples/sec: 1368.52 - lr: 0.000032 - momentum: 0.000000
|
85 |
+
2024-03-26 11:50:49,846 epoch 1 - iter 36/48 - loss 2.07405562 - time (sec): 17.66 - samples/sec: 1414.47 - lr: 0.000036 - momentum: 0.000000
|
86 |
+
2024-03-26 11:50:51,759 epoch 1 - iter 40/48 - loss 1.96081698 - time (sec): 19.57 - samples/sec: 1422.95 - lr: 0.000041 - momentum: 0.000000
|
87 |
+
2024-03-26 11:50:53,872 epoch 1 - iter 44/48 - loss 1.83563996 - time (sec): 21.69 - samples/sec: 1440.03 - lr: 0.000045 - momentum: 0.000000
|
88 |
+
2024-03-26 11:50:55,635 epoch 1 - iter 48/48 - loss 1.74075518 - time (sec): 23.45 - samples/sec: 1470.02 - lr: 0.000049 - momentum: 0.000000
|
89 |
+
2024-03-26 11:50:55,636 ----------------------------------------------------------------------------------------------------
|
90 |
+
2024-03-26 11:50:55,636 EPOCH 1 done: loss 1.7408 - lr: 0.000049
|
91 |
+
2024-03-26 11:50:56,486 DEV : loss 0.5590143203735352 - f1-score (micro avg) 0.6215
|
92 |
+
2024-03-26 11:50:56,487 saving best model
|
93 |
+
2024-03-26 11:50:56,761 ----------------------------------------------------------------------------------------------------
|
94 |
+
2024-03-26 11:50:58,068 epoch 2 - iter 4/48 - loss 0.74927750 - time (sec): 1.31 - samples/sec: 1813.34 - lr: 0.000050 - momentum: 0.000000
|
95 |
+
2024-03-26 11:51:00,399 epoch 2 - iter 8/48 - loss 0.55633973 - time (sec): 3.64 - samples/sec: 1500.40 - lr: 0.000049 - momentum: 0.000000
|
96 |
+
2024-03-26 11:51:02,248 epoch 2 - iter 12/48 - loss 0.53592159 - time (sec): 5.49 - samples/sec: 1553.43 - lr: 0.000049 - momentum: 0.000000
|
97 |
+
2024-03-26 11:51:04,751 epoch 2 - iter 16/48 - loss 0.48174577 - time (sec): 7.99 - samples/sec: 1412.27 - lr: 0.000048 - momentum: 0.000000
|
98 |
+
2024-03-26 11:51:08,163 epoch 2 - iter 20/48 - loss 0.43660137 - time (sec): 11.40 - samples/sec: 1294.14 - lr: 0.000048 - momentum: 0.000000
|
99 |
+
2024-03-26 11:51:09,690 epoch 2 - iter 24/48 - loss 0.44556220 - time (sec): 12.93 - samples/sec: 1349.19 - lr: 0.000047 - momentum: 0.000000
|
100 |
+
2024-03-26 11:51:12,390 epoch 2 - iter 28/48 - loss 0.43334658 - time (sec): 15.63 - samples/sec: 1324.84 - lr: 0.000047 - momentum: 0.000000
|
101 |
+
2024-03-26 11:51:15,161 epoch 2 - iter 32/48 - loss 0.41770016 - time (sec): 18.40 - samples/sec: 1326.68 - lr: 0.000046 - momentum: 0.000000
|
102 |
+
2024-03-26 11:51:17,310 epoch 2 - iter 36/48 - loss 0.41558433 - time (sec): 20.55 - samples/sec: 1316.12 - lr: 0.000046 - momentum: 0.000000
|
103 |
+
2024-03-26 11:51:19,903 epoch 2 - iter 40/48 - loss 0.40243733 - time (sec): 23.14 - samples/sec: 1304.33 - lr: 0.000046 - momentum: 0.000000
|
104 |
+
2024-03-26 11:51:21,028 epoch 2 - iter 44/48 - loss 0.39684789 - time (sec): 24.27 - samples/sec: 1336.21 - lr: 0.000045 - momentum: 0.000000
|
105 |
+
2024-03-26 11:51:22,215 epoch 2 - iter 48/48 - loss 0.38872982 - time (sec): 25.45 - samples/sec: 1354.35 - lr: 0.000045 - momentum: 0.000000
|
106 |
+
2024-03-26 11:51:22,215 ----------------------------------------------------------------------------------------------------
|
107 |
+
2024-03-26 11:51:22,215 EPOCH 2 done: loss 0.3887 - lr: 0.000045
|
108 |
+
2024-03-26 11:51:23,158 DEV : loss 0.2667681574821472 - f1-score (micro avg) 0.8317
|
109 |
+
2024-03-26 11:51:23,159 saving best model
|
110 |
+
2024-03-26 11:51:23,612 ----------------------------------------------------------------------------------------------------
|
111 |
+
2024-03-26 11:51:25,734 epoch 3 - iter 4/48 - loss 0.22802041 - time (sec): 2.12 - samples/sec: 1157.60 - lr: 0.000044 - momentum: 0.000000
|
112 |
+
2024-03-26 11:51:27,299 epoch 3 - iter 8/48 - loss 0.17935289 - time (sec): 3.69 - samples/sec: 1299.68 - lr: 0.000044 - momentum: 0.000000
|
113 |
+
2024-03-26 11:51:29,925 epoch 3 - iter 12/48 - loss 0.20412596 - time (sec): 6.31 - samples/sec: 1232.54 - lr: 0.000043 - momentum: 0.000000
|
114 |
+
2024-03-26 11:51:32,088 epoch 3 - iter 16/48 - loss 0.20474341 - time (sec): 8.48 - samples/sec: 1258.27 - lr: 0.000043 - momentum: 0.000000
|
115 |
+
2024-03-26 11:51:34,119 epoch 3 - iter 20/48 - loss 0.20097314 - time (sec): 10.51 - samples/sec: 1317.88 - lr: 0.000042 - momentum: 0.000000
|
116 |
+
2024-03-26 11:51:36,366 epoch 3 - iter 24/48 - loss 0.19596982 - time (sec): 12.75 - samples/sec: 1340.53 - lr: 0.000042 - momentum: 0.000000
|
117 |
+
2024-03-26 11:51:38,961 epoch 3 - iter 28/48 - loss 0.19183246 - time (sec): 15.35 - samples/sec: 1299.58 - lr: 0.000041 - momentum: 0.000000
|
118 |
+
2024-03-26 11:51:41,654 epoch 3 - iter 32/48 - loss 0.18547973 - time (sec): 18.04 - samples/sec: 1274.49 - lr: 0.000041 - momentum: 0.000000
|
119 |
+
2024-03-26 11:51:43,846 epoch 3 - iter 36/48 - loss 0.18265888 - time (sec): 20.23 - samples/sec: 1279.47 - lr: 0.000040 - momentum: 0.000000
|
120 |
+
2024-03-26 11:51:46,235 epoch 3 - iter 40/48 - loss 0.19056221 - time (sec): 22.62 - samples/sec: 1295.44 - lr: 0.000040 - momentum: 0.000000
|
121 |
+
2024-03-26 11:51:48,874 epoch 3 - iter 44/48 - loss 0.18669032 - time (sec): 25.26 - samples/sec: 1279.02 - lr: 0.000040 - momentum: 0.000000
|
122 |
+
2024-03-26 11:51:50,421 epoch 3 - iter 48/48 - loss 0.18771402 - time (sec): 26.81 - samples/sec: 1285.87 - lr: 0.000039 - momentum: 0.000000
|
123 |
+
2024-03-26 11:51:50,422 ----------------------------------------------------------------------------------------------------
|
124 |
+
2024-03-26 11:51:50,422 EPOCH 3 done: loss 0.1877 - lr: 0.000039
|
125 |
+
2024-03-26 11:51:51,355 DEV : loss 0.21384288370609283 - f1-score (micro avg) 0.8696
|
126 |
+
2024-03-26 11:51:51,356 saving best model
|
127 |
+
2024-03-26 11:51:51,792 ----------------------------------------------------------------------------------------------------
|
128 |
+
2024-03-26 11:51:54,910 epoch 4 - iter 4/48 - loss 0.08055261 - time (sec): 3.12 - samples/sec: 1169.44 - lr: 0.000039 - momentum: 0.000000
|
129 |
+
2024-03-26 11:51:56,214 epoch 4 - iter 8/48 - loss 0.09810133 - time (sec): 4.42 - samples/sec: 1330.29 - lr: 0.000038 - momentum: 0.000000
|
130 |
+
2024-03-26 11:51:58,359 epoch 4 - iter 12/48 - loss 0.11670141 - time (sec): 6.57 - samples/sec: 1404.78 - lr: 0.000038 - momentum: 0.000000
|
131 |
+
2024-03-26 11:52:01,056 epoch 4 - iter 16/48 - loss 0.11824326 - time (sec): 9.26 - samples/sec: 1315.21 - lr: 0.000037 - momentum: 0.000000
|
132 |
+
2024-03-26 11:52:02,065 epoch 4 - iter 20/48 - loss 0.11907194 - time (sec): 10.27 - samples/sec: 1398.47 - lr: 0.000037 - momentum: 0.000000
|
133 |
+
2024-03-26 11:52:03,528 epoch 4 - iter 24/48 - loss 0.11905123 - time (sec): 11.74 - samples/sec: 1440.38 - lr: 0.000036 - momentum: 0.000000
|
134 |
+
2024-03-26 11:52:06,697 epoch 4 - iter 28/48 - loss 0.11424266 - time (sec): 14.90 - samples/sec: 1354.19 - lr: 0.000036 - momentum: 0.000000
|
135 |
+
2024-03-26 11:52:09,263 epoch 4 - iter 32/48 - loss 0.12479927 - time (sec): 17.47 - samples/sec: 1346.09 - lr: 0.000035 - momentum: 0.000000
|
136 |
+
2024-03-26 11:52:10,874 epoch 4 - iter 36/48 - loss 0.12327164 - time (sec): 19.08 - samples/sec: 1377.21 - lr: 0.000035 - momentum: 0.000000
|
137 |
+
2024-03-26 11:52:12,915 epoch 4 - iter 40/48 - loss 0.12170118 - time (sec): 21.12 - samples/sec: 1391.90 - lr: 0.000034 - momentum: 0.000000
|
138 |
+
2024-03-26 11:52:14,876 epoch 4 - iter 44/48 - loss 0.12158731 - time (sec): 23.08 - samples/sec: 1405.09 - lr: 0.000034 - momentum: 0.000000
|
139 |
+
2024-03-26 11:52:15,962 epoch 4 - iter 48/48 - loss 0.12234921 - time (sec): 24.17 - samples/sec: 1426.28 - lr: 0.000034 - momentum: 0.000000
|
140 |
+
2024-03-26 11:52:15,962 ----------------------------------------------------------------------------------------------------
|
141 |
+
2024-03-26 11:52:15,962 EPOCH 4 done: loss 0.1223 - lr: 0.000034
|
142 |
+
2024-03-26 11:52:16,902 DEV : loss 0.2320009469985962 - f1-score (micro avg) 0.8838
|
143 |
+
2024-03-26 11:52:16,903 saving best model
|
144 |
+
2024-03-26 11:52:17,342 ----------------------------------------------------------------------------------------------------
|
145 |
+
2024-03-26 11:52:18,454 epoch 5 - iter 4/48 - loss 0.14241480 - time (sec): 1.11 - samples/sec: 2291.05 - lr: 0.000033 - momentum: 0.000000
|
146 |
+
2024-03-26 11:52:20,452 epoch 5 - iter 8/48 - loss 0.12170118 - time (sec): 3.11 - samples/sec: 1666.99 - lr: 0.000033 - momentum: 0.000000
|
147 |
+
2024-03-26 11:52:22,622 epoch 5 - iter 12/48 - loss 0.10872669 - time (sec): 5.28 - samples/sec: 1516.14 - lr: 0.000032 - momentum: 0.000000
|
148 |
+
2024-03-26 11:52:25,017 epoch 5 - iter 16/48 - loss 0.10192099 - time (sec): 7.67 - samples/sec: 1445.48 - lr: 0.000032 - momentum: 0.000000
|
149 |
+
2024-03-26 11:52:27,291 epoch 5 - iter 20/48 - loss 0.10039604 - time (sec): 9.95 - samples/sec: 1375.72 - lr: 0.000031 - momentum: 0.000000
|
150 |
+
2024-03-26 11:52:29,517 epoch 5 - iter 24/48 - loss 0.09677573 - time (sec): 12.17 - samples/sec: 1395.72 - lr: 0.000031 - momentum: 0.000000
|
151 |
+
2024-03-26 11:52:31,245 epoch 5 - iter 28/48 - loss 0.09570667 - time (sec): 13.90 - samples/sec: 1415.80 - lr: 0.000030 - momentum: 0.000000
|
152 |
+
2024-03-26 11:52:33,409 epoch 5 - iter 32/48 - loss 0.08837081 - time (sec): 16.06 - samples/sec: 1438.06 - lr: 0.000030 - momentum: 0.000000
|
153 |
+
2024-03-26 11:52:34,876 epoch 5 - iter 36/48 - loss 0.08830167 - time (sec): 17.53 - samples/sec: 1460.14 - lr: 0.000029 - momentum: 0.000000
|
154 |
+
2024-03-26 11:52:37,584 epoch 5 - iter 40/48 - loss 0.08443272 - time (sec): 20.24 - samples/sec: 1424.26 - lr: 0.000029 - momentum: 0.000000
|
155 |
+
2024-03-26 11:52:40,594 epoch 5 - iter 44/48 - loss 0.08378061 - time (sec): 23.25 - samples/sec: 1377.49 - lr: 0.000029 - momentum: 0.000000
|
156 |
+
2024-03-26 11:52:42,160 epoch 5 - iter 48/48 - loss 0.08478604 - time (sec): 24.82 - samples/sec: 1389.10 - lr: 0.000028 - momentum: 0.000000
|
157 |
+
2024-03-26 11:52:42,160 ----------------------------------------------------------------------------------------------------
|
158 |
+
2024-03-26 11:52:42,160 EPOCH 5 done: loss 0.0848 - lr: 0.000028
|
159 |
+
2024-03-26 11:52:43,122 DEV : loss 0.17314665019512177 - f1-score (micro avg) 0.9055
|
160 |
+
2024-03-26 11:52:43,124 saving best model
|
161 |
+
2024-03-26 11:52:43,574 ----------------------------------------------------------------------------------------------------
|
162 |
+
2024-03-26 11:52:45,519 epoch 6 - iter 4/48 - loss 0.09272200 - time (sec): 1.94 - samples/sec: 1511.87 - lr: 0.000028 - momentum: 0.000000
|
163 |
+
2024-03-26 11:52:47,296 epoch 6 - iter 8/48 - loss 0.07485378 - time (sec): 3.72 - samples/sec: 1557.93 - lr: 0.000027 - momentum: 0.000000
|
164 |
+
2024-03-26 11:52:49,682 epoch 6 - iter 12/48 - loss 0.07041558 - time (sec): 6.11 - samples/sec: 1443.76 - lr: 0.000027 - momentum: 0.000000
|
165 |
+
2024-03-26 11:52:51,317 epoch 6 - iter 16/48 - loss 0.06510204 - time (sec): 7.74 - samples/sec: 1463.60 - lr: 0.000026 - momentum: 0.000000
|
166 |
+
2024-03-26 11:52:54,012 epoch 6 - iter 20/48 - loss 0.05955492 - time (sec): 10.44 - samples/sec: 1376.47 - lr: 0.000026 - momentum: 0.000000
|
167 |
+
2024-03-26 11:52:56,075 epoch 6 - iter 24/48 - loss 0.06109297 - time (sec): 12.50 - samples/sec: 1399.15 - lr: 0.000025 - momentum: 0.000000
|
168 |
+
2024-03-26 11:52:58,815 epoch 6 - iter 28/48 - loss 0.06141292 - time (sec): 15.24 - samples/sec: 1373.57 - lr: 0.000025 - momentum: 0.000000
|
169 |
+
2024-03-26 11:53:00,923 epoch 6 - iter 32/48 - loss 0.06055801 - time (sec): 17.35 - samples/sec: 1354.68 - lr: 0.000024 - momentum: 0.000000
|
170 |
+
2024-03-26 11:53:02,092 epoch 6 - iter 36/48 - loss 0.06095859 - time (sec): 18.52 - samples/sec: 1400.89 - lr: 0.000024 - momentum: 0.000000
|
171 |
+
2024-03-26 11:53:04,358 epoch 6 - iter 40/48 - loss 0.06004242 - time (sec): 20.78 - samples/sec: 1391.32 - lr: 0.000023 - momentum: 0.000000
|
172 |
+
2024-03-26 11:53:06,050 epoch 6 - iter 44/48 - loss 0.06403233 - time (sec): 22.48 - samples/sec: 1412.70 - lr: 0.000023 - momentum: 0.000000
|
173 |
+
2024-03-26 11:53:07,960 epoch 6 - iter 48/48 - loss 0.06292329 - time (sec): 24.39 - samples/sec: 1413.64 - lr: 0.000023 - momentum: 0.000000
|
174 |
+
2024-03-26 11:53:07,960 ----------------------------------------------------------------------------------------------------
|
175 |
+
2024-03-26 11:53:07,960 EPOCH 6 done: loss 0.0629 - lr: 0.000023
|
176 |
+
2024-03-26 11:53:08,931 DEV : loss 0.189381942152977 - f1-score (micro avg) 0.8991
|
177 |
+
2024-03-26 11:53:08,932 ----------------------------------------------------------------------------------------------------
|
178 |
+
2024-03-26 11:53:10,489 epoch 7 - iter 4/48 - loss 0.04704627 - time (sec): 1.56 - samples/sec: 1797.92 - lr: 0.000022 - momentum: 0.000000
|
179 |
+
2024-03-26 11:53:12,647 epoch 7 - iter 8/48 - loss 0.04048940 - time (sec): 3.71 - samples/sec: 1647.48 - lr: 0.000022 - momentum: 0.000000
|
180 |
+
2024-03-26 11:53:15,007 epoch 7 - iter 12/48 - loss 0.03980474 - time (sec): 6.07 - samples/sec: 1450.14 - lr: 0.000021 - momentum: 0.000000
|
181 |
+
2024-03-26 11:53:16,272 epoch 7 - iter 16/48 - loss 0.04476687 - time (sec): 7.34 - samples/sec: 1533.43 - lr: 0.000021 - momentum: 0.000000
|
182 |
+
2024-03-26 11:53:18,458 epoch 7 - iter 20/48 - loss 0.04349881 - time (sec): 9.52 - samples/sec: 1506.04 - lr: 0.000020 - momentum: 0.000000
|
183 |
+
2024-03-26 11:53:20,044 epoch 7 - iter 24/48 - loss 0.04224759 - time (sec): 11.11 - samples/sec: 1549.09 - lr: 0.000020 - momentum: 0.000000
|
184 |
+
2024-03-26 11:53:22,279 epoch 7 - iter 28/48 - loss 0.04243268 - time (sec): 13.35 - samples/sec: 1504.12 - lr: 0.000019 - momentum: 0.000000
|
185 |
+
2024-03-26 11:53:25,084 epoch 7 - iter 32/48 - loss 0.04481656 - time (sec): 16.15 - samples/sec: 1441.94 - lr: 0.000019 - momentum: 0.000000
|
186 |
+
2024-03-26 11:53:27,217 epoch 7 - iter 36/48 - loss 0.04402562 - time (sec): 18.28 - samples/sec: 1435.12 - lr: 0.000018 - momentum: 0.000000
|
187 |
+
2024-03-26 11:53:28,363 epoch 7 - iter 40/48 - loss 0.04695744 - time (sec): 19.43 - samples/sec: 1466.74 - lr: 0.000018 - momentum: 0.000000
|
188 |
+
2024-03-26 11:53:31,040 epoch 7 - iter 44/48 - loss 0.04939896 - time (sec): 22.11 - samples/sec: 1450.26 - lr: 0.000017 - momentum: 0.000000
|
189 |
+
2024-03-26 11:53:32,211 epoch 7 - iter 48/48 - loss 0.04967125 - time (sec): 23.28 - samples/sec: 1480.83 - lr: 0.000017 - momentum: 0.000000
|
190 |
+
2024-03-26 11:53:32,212 ----------------------------------------------------------------------------------------------------
|
191 |
+
2024-03-26 11:53:32,212 EPOCH 7 done: loss 0.0497 - lr: 0.000017
|
192 |
+
2024-03-26 11:53:33,165 DEV : loss 0.1776585429906845 - f1-score (micro avg) 0.918
|
193 |
+
2024-03-26 11:53:33,166 saving best model
|
194 |
+
2024-03-26 11:53:33,650 ----------------------------------------------------------------------------------------------------
|
195 |
+
2024-03-26 11:53:35,899 epoch 8 - iter 4/48 - loss 0.01606641 - time (sec): 2.25 - samples/sec: 1232.77 - lr: 0.000017 - momentum: 0.000000
|
196 |
+
2024-03-26 11:53:38,601 epoch 8 - iter 8/48 - loss 0.02001419 - time (sec): 4.95 - samples/sec: 1219.97 - lr: 0.000016 - momentum: 0.000000
|
197 |
+
2024-03-26 11:53:40,284 epoch 8 - iter 12/48 - loss 0.01944511 - time (sec): 6.63 - samples/sec: 1278.40 - lr: 0.000016 - momentum: 0.000000
|
198 |
+
2024-03-26 11:53:42,946 epoch 8 - iter 16/48 - loss 0.02496767 - time (sec): 9.30 - samples/sec: 1238.39 - lr: 0.000015 - momentum: 0.000000
|
199 |
+
2024-03-26 11:53:44,682 epoch 8 - iter 20/48 - loss 0.03010170 - time (sec): 11.03 - samples/sec: 1287.97 - lr: 0.000015 - momentum: 0.000000
|
200 |
+
2024-03-26 11:53:46,227 epoch 8 - iter 24/48 - loss 0.03609072 - time (sec): 12.58 - samples/sec: 1351.61 - lr: 0.000014 - momentum: 0.000000
|
201 |
+
2024-03-26 11:53:48,151 epoch 8 - iter 28/48 - loss 0.03779326 - time (sec): 14.50 - samples/sec: 1375.28 - lr: 0.000014 - momentum: 0.000000
|
202 |
+
2024-03-26 11:53:50,870 epoch 8 - iter 32/48 - loss 0.03941547 - time (sec): 17.22 - samples/sec: 1364.27 - lr: 0.000013 - momentum: 0.000000
|
203 |
+
2024-03-26 11:53:53,365 epoch 8 - iter 36/48 - loss 0.03979896 - time (sec): 19.71 - samples/sec: 1355.95 - lr: 0.000013 - momentum: 0.000000
|
204 |
+
2024-03-26 11:53:55,625 epoch 8 - iter 40/48 - loss 0.03932473 - time (sec): 21.97 - samples/sec: 1338.97 - lr: 0.000012 - momentum: 0.000000
|
205 |
+
2024-03-26 11:53:58,043 epoch 8 - iter 44/48 - loss 0.03756691 - time (sec): 24.39 - samples/sec: 1324.33 - lr: 0.000012 - momentum: 0.000000
|
206 |
+
2024-03-26 11:53:59,648 epoch 8 - iter 48/48 - loss 0.03706335 - time (sec): 26.00 - samples/sec: 1325.99 - lr: 0.000011 - momentum: 0.000000
|
207 |
+
2024-03-26 11:53:59,648 ----------------------------------------------------------------------------------------------------
|
208 |
+
2024-03-26 11:53:59,648 EPOCH 8 done: loss 0.0371 - lr: 0.000011
|
209 |
+
2024-03-26 11:54:00,585 DEV : loss 0.17568133771419525 - f1-score (micro avg) 0.9315
|
210 |
+
2024-03-26 11:54:00,586 saving best model
|
211 |
+
2024-03-26 11:54:01,026 ----------------------------------------------------------------------------------------------------
|
212 |
+
2024-03-26 11:54:02,945 epoch 9 - iter 4/48 - loss 0.03057517 - time (sec): 1.92 - samples/sec: 1504.93 - lr: 0.000011 - momentum: 0.000000
|
213 |
+
2024-03-26 11:54:06,225 epoch 9 - iter 8/48 - loss 0.02777670 - time (sec): 5.20 - samples/sec: 1210.84 - lr: 0.000011 - momentum: 0.000000
|
214 |
+
2024-03-26 11:54:07,959 epoch 9 - iter 12/48 - loss 0.02319110 - time (sec): 6.93 - samples/sec: 1247.46 - lr: 0.000010 - momentum: 0.000000
|
215 |
+
2024-03-26 11:54:09,943 epoch 9 - iter 16/48 - loss 0.02857044 - time (sec): 8.92 - samples/sec: 1282.11 - lr: 0.000010 - momentum: 0.000000
|
216 |
+
2024-03-26 11:54:12,838 epoch 9 - iter 20/48 - loss 0.02512622 - time (sec): 11.81 - samples/sec: 1257.43 - lr: 0.000009 - momentum: 0.000000
|
217 |
+
2024-03-26 11:54:14,417 epoch 9 - iter 24/48 - loss 0.02482773 - time (sec): 13.39 - samples/sec: 1303.02 - lr: 0.000009 - momentum: 0.000000
|
218 |
+
2024-03-26 11:54:16,447 epoch 9 - iter 28/48 - loss 0.02786716 - time (sec): 15.42 - samples/sec: 1324.71 - lr: 0.000008 - momentum: 0.000000
|
219 |
+
2024-03-26 11:54:18,876 epoch 9 - iter 32/48 - loss 0.02711697 - time (sec): 17.85 - samples/sec: 1301.45 - lr: 0.000008 - momentum: 0.000000
|
220 |
+
2024-03-26 11:54:20,202 epoch 9 - iter 36/48 - loss 0.03102021 - time (sec): 19.18 - samples/sec: 1333.10 - lr: 0.000007 - momentum: 0.000000
|
221 |
+
2024-03-26 11:54:23,481 epoch 9 - iter 40/48 - loss 0.03040776 - time (sec): 22.46 - samples/sec: 1288.71 - lr: 0.000007 - momentum: 0.000000
|
222 |
+
2024-03-26 11:54:25,619 epoch 9 - iter 44/48 - loss 0.02844050 - time (sec): 24.59 - samples/sec: 1313.34 - lr: 0.000006 - momentum: 0.000000
|
223 |
+
2024-03-26 11:54:26,608 epoch 9 - iter 48/48 - loss 0.02882616 - time (sec): 25.58 - samples/sec: 1347.54 - lr: 0.000006 - momentum: 0.000000
|
224 |
+
2024-03-26 11:54:26,608 ----------------------------------------------------------------------------------------------------
|
225 |
+
2024-03-26 11:54:26,608 EPOCH 9 done: loss 0.0288 - lr: 0.000006
|
226 |
+
2024-03-26 11:54:27,540 DEV : loss 0.1826149970293045 - f1-score (micro avg) 0.9308
|
227 |
+
2024-03-26 11:54:27,541 ----------------------------------------------------------------------------------------------------
|
228 |
+
2024-03-26 11:54:29,493 epoch 10 - iter 4/48 - loss 0.02449608 - time (sec): 1.95 - samples/sec: 1324.59 - lr: 0.000006 - momentum: 0.000000
|
229 |
+
2024-03-26 11:54:32,350 epoch 10 - iter 8/48 - loss 0.01705663 - time (sec): 4.81 - samples/sec: 1203.11 - lr: 0.000005 - momentum: 0.000000
|
230 |
+
2024-03-26 11:54:34,380 epoch 10 - iter 12/48 - loss 0.02218434 - time (sec): 6.84 - samples/sec: 1274.17 - lr: 0.000005 - momentum: 0.000000
|
231 |
+
2024-03-26 11:54:36,467 epoch 10 - iter 16/48 - loss 0.02207035 - time (sec): 8.93 - samples/sec: 1362.88 - lr: 0.000004 - momentum: 0.000000
|
232 |
+
2024-03-26 11:54:37,324 epoch 10 - iter 20/48 - loss 0.02077247 - time (sec): 9.78 - samples/sec: 1443.11 - lr: 0.000004 - momentum: 0.000000
|
233 |
+
2024-03-26 11:54:39,048 epoch 10 - iter 24/48 - loss 0.02024295 - time (sec): 11.51 - samples/sec: 1469.98 - lr: 0.000003 - momentum: 0.000000
|
234 |
+
2024-03-26 11:54:39,981 epoch 10 - iter 28/48 - loss 0.01939105 - time (sec): 12.44 - samples/sec: 1536.11 - lr: 0.000003 - momentum: 0.000000
|
235 |
+
2024-03-26 11:54:42,327 epoch 10 - iter 32/48 - loss 0.01801898 - time (sec): 14.79 - samples/sec: 1504.67 - lr: 0.000002 - momentum: 0.000000
|
236 |
+
2024-03-26 11:54:44,924 epoch 10 - iter 36/48 - loss 0.02222425 - time (sec): 17.38 - samples/sec: 1466.68 - lr: 0.000002 - momentum: 0.000000
|
237 |
+
2024-03-26 11:54:46,906 epoch 10 - iter 40/48 - loss 0.02282312 - time (sec): 19.36 - samples/sec: 1457.07 - lr: 0.000001 - momentum: 0.000000
|
238 |
+
2024-03-26 11:54:49,574 epoch 10 - iter 44/48 - loss 0.02314136 - time (sec): 22.03 - samples/sec: 1443.26 - lr: 0.000001 - momentum: 0.000000
|
239 |
+
2024-03-26 11:54:51,197 epoch 10 - iter 48/48 - loss 0.02323381 - time (sec): 23.66 - samples/sec: 1457.27 - lr: 0.000000 - momentum: 0.000000
|
240 |
+
2024-03-26 11:54:51,197 ----------------------------------------------------------------------------------------------------
|
241 |
+
2024-03-26 11:54:51,197 EPOCH 10 done: loss 0.0232 - lr: 0.000000
|
242 |
+
2024-03-26 11:54:52,159 DEV : loss 0.1922144740819931 - f1-score (micro avg) 0.9281
|
243 |
+
2024-03-26 11:54:52,449 ----------------------------------------------------------------------------------------------------
|
244 |
+
2024-03-26 11:54:52,450 Loading model from best epoch ...
|
245 |
+
2024-03-26 11:54:53,340 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
|
246 |
+
2024-03-26 11:54:54,197
|
247 |
+
Results:
|
248 |
+
- F-score (micro) 0.9009
|
249 |
+
- F-score (macro) 0.6853
|
250 |
+
- Accuracy 0.822
|
251 |
+
|
252 |
+
By class:
|
253 |
+
precision recall f1-score support
|
254 |
+
|
255 |
+
Unternehmen 0.9000 0.8797 0.8897 266
|
256 |
+
Auslagerung 0.8523 0.9036 0.8772 249
|
257 |
+
Ort 0.9635 0.9851 0.9742 134
|
258 |
+
Software 0.0000 0.0000 0.0000 0
|
259 |
+
|
260 |
+
micro avg 0.8914 0.9106 0.9009 649
|
261 |
+
macro avg 0.6789 0.6921 0.6853 649
|
262 |
+
weighted avg 0.8948 0.9106 0.9024 649
|
263 |
+
|
264 |
+
2024-03-26 11:54:54,197 ----------------------------------------------------------------------------------------------------
|