File size: 24,031 Bytes
2ef9e95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
2023-10-18 16:36:23,556 ----------------------------------------------------------------------------------------------------
2023-10-18 16:36:23,556 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 128)
        (position_embeddings): Embedding(512, 128)
        (token_type_embeddings): Embedding(2, 128)
        (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-1): 2 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=128, out_features=128, bias=True)
                (key): Linear(in_features=128, out_features=128, bias=True)
                (value): Linear(in_features=128, out_features=128, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=128, out_features=128, bias=True)
                (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=128, out_features=512, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=512, out_features=128, bias=True)
              (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=128, out_features=128, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=128, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-18 16:36:23,556 ----------------------------------------------------------------------------------------------------
2023-10-18 16:36:23,556 MultiCorpus: 966 train + 219 dev + 204 test sentences
 - NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-18 16:36:23,556 ----------------------------------------------------------------------------------------------------
2023-10-18 16:36:23,556 Train:  966 sentences
2023-10-18 16:36:23,556         (train_with_dev=False, train_with_test=False)
2023-10-18 16:36:23,556 ----------------------------------------------------------------------------------------------------
2023-10-18 16:36:23,556 Training Params:
2023-10-18 16:36:23,557  - learning_rate: "5e-05" 
2023-10-18 16:36:23,557  - mini_batch_size: "4"
2023-10-18 16:36:23,557  - max_epochs: "10"
2023-10-18 16:36:23,557  - shuffle: "True"
2023-10-18 16:36:23,557 ----------------------------------------------------------------------------------------------------
2023-10-18 16:36:23,557 Plugins:
2023-10-18 16:36:23,557  - TensorboardLogger
2023-10-18 16:36:23,557  - LinearScheduler | warmup_fraction: '0.1'
2023-10-18 16:36:23,557 ----------------------------------------------------------------------------------------------------
2023-10-18 16:36:23,557 Final evaluation on model from best epoch (best-model.pt)
2023-10-18 16:36:23,557  - metric: "('micro avg', 'f1-score')"
2023-10-18 16:36:23,557 ----------------------------------------------------------------------------------------------------
2023-10-18 16:36:23,557 Computation:
2023-10-18 16:36:23,557  - compute on device: cuda:0
2023-10-18 16:36:23,557  - embedding storage: none
2023-10-18 16:36:23,557 ----------------------------------------------------------------------------------------------------
2023-10-18 16:36:23,557 Model training base path: "hmbench-ajmc/fr-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1"
2023-10-18 16:36:23,557 ----------------------------------------------------------------------------------------------------
2023-10-18 16:36:23,557 ----------------------------------------------------------------------------------------------------
2023-10-18 16:36:23,557 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-18 16:36:23,903 epoch 1 - iter 24/242 - loss 4.06894328 - time (sec): 0.35 - samples/sec: 7303.90 - lr: 0.000005 - momentum: 0.000000
2023-10-18 16:36:24,299 epoch 1 - iter 48/242 - loss 4.02616879 - time (sec): 0.74 - samples/sec: 6639.93 - lr: 0.000010 - momentum: 0.000000
2023-10-18 16:36:24,687 epoch 1 - iter 72/242 - loss 3.82600153 - time (sec): 1.13 - samples/sec: 6689.58 - lr: 0.000015 - momentum: 0.000000
2023-10-18 16:36:25,057 epoch 1 - iter 96/242 - loss 3.59033518 - time (sec): 1.50 - samples/sec: 6922.07 - lr: 0.000020 - momentum: 0.000000
2023-10-18 16:36:25,433 epoch 1 - iter 120/242 - loss 3.38518381 - time (sec): 1.88 - samples/sec: 6651.40 - lr: 0.000025 - momentum: 0.000000
2023-10-18 16:36:25,802 epoch 1 - iter 144/242 - loss 3.11809328 - time (sec): 2.24 - samples/sec: 6616.40 - lr: 0.000030 - momentum: 0.000000
2023-10-18 16:36:26,173 epoch 1 - iter 168/242 - loss 2.85941045 - time (sec): 2.62 - samples/sec: 6562.65 - lr: 0.000035 - momentum: 0.000000
2023-10-18 16:36:26,542 epoch 1 - iter 192/242 - loss 2.60859374 - time (sec): 2.98 - samples/sec: 6557.08 - lr: 0.000039 - momentum: 0.000000
2023-10-18 16:36:26,921 epoch 1 - iter 216/242 - loss 2.38057612 - time (sec): 3.36 - samples/sec: 6626.07 - lr: 0.000044 - momentum: 0.000000
2023-10-18 16:36:27,289 epoch 1 - iter 240/242 - loss 2.22565024 - time (sec): 3.73 - samples/sec: 6578.79 - lr: 0.000049 - momentum: 0.000000
2023-10-18 16:36:27,318 ----------------------------------------------------------------------------------------------------
2023-10-18 16:36:27,318 EPOCH 1 done: loss 2.2152 - lr: 0.000049
2023-10-18 16:36:27,805 DEV : loss 0.6376588940620422 - f1-score (micro avg)  0.0
2023-10-18 16:36:27,810 ----------------------------------------------------------------------------------------------------
2023-10-18 16:36:28,173 epoch 2 - iter 24/242 - loss 0.71028364 - time (sec): 0.36 - samples/sec: 6819.79 - lr: 0.000049 - momentum: 0.000000
2023-10-18 16:36:28,539 epoch 2 - iter 48/242 - loss 0.71336343 - time (sec): 0.73 - samples/sec: 7166.82 - lr: 0.000049 - momentum: 0.000000
2023-10-18 16:36:28,907 epoch 2 - iter 72/242 - loss 0.67520329 - time (sec): 1.10 - samples/sec: 7266.90 - lr: 0.000048 - momentum: 0.000000
2023-10-18 16:36:29,273 epoch 2 - iter 96/242 - loss 0.66293218 - time (sec): 1.46 - samples/sec: 7276.61 - lr: 0.000048 - momentum: 0.000000
2023-10-18 16:36:29,622 epoch 2 - iter 120/242 - loss 0.65478994 - time (sec): 1.81 - samples/sec: 6927.43 - lr: 0.000047 - momentum: 0.000000
2023-10-18 16:36:29,980 epoch 2 - iter 144/242 - loss 0.64752733 - time (sec): 2.17 - samples/sec: 6783.23 - lr: 0.000047 - momentum: 0.000000
2023-10-18 16:36:30,346 epoch 2 - iter 168/242 - loss 0.64034132 - time (sec): 2.54 - samples/sec: 6729.42 - lr: 0.000046 - momentum: 0.000000
2023-10-18 16:36:30,713 epoch 2 - iter 192/242 - loss 0.63776300 - time (sec): 2.90 - samples/sec: 6775.14 - lr: 0.000046 - momentum: 0.000000
2023-10-18 16:36:31,074 epoch 2 - iter 216/242 - loss 0.62689871 - time (sec): 3.26 - samples/sec: 6784.92 - lr: 0.000045 - momentum: 0.000000
2023-10-18 16:36:31,458 epoch 2 - iter 240/242 - loss 0.60546341 - time (sec): 3.65 - samples/sec: 6743.08 - lr: 0.000045 - momentum: 0.000000
2023-10-18 16:36:31,484 ----------------------------------------------------------------------------------------------------
2023-10-18 16:36:31,484 EPOCH 2 done: loss 0.6054 - lr: 0.000045
2023-10-18 16:36:31,911 DEV : loss 0.44410139322280884 - f1-score (micro avg)  0.1726
2023-10-18 16:36:31,915 saving best model
2023-10-18 16:36:31,941 ----------------------------------------------------------------------------------------------------
2023-10-18 16:36:32,302 epoch 3 - iter 24/242 - loss 0.47995476 - time (sec): 0.36 - samples/sec: 6864.00 - lr: 0.000044 - momentum: 0.000000
2023-10-18 16:36:32,645 epoch 3 - iter 48/242 - loss 0.51537977 - time (sec): 0.70 - samples/sec: 6600.20 - lr: 0.000043 - momentum: 0.000000
2023-10-18 16:36:33,009 epoch 3 - iter 72/242 - loss 0.52591455 - time (sec): 1.07 - samples/sec: 6524.08 - lr: 0.000043 - momentum: 0.000000
2023-10-18 16:36:33,351 epoch 3 - iter 96/242 - loss 0.50834626 - time (sec): 1.41 - samples/sec: 6739.80 - lr: 0.000042 - momentum: 0.000000
2023-10-18 16:36:33,688 epoch 3 - iter 120/242 - loss 0.49923645 - time (sec): 1.75 - samples/sec: 6818.81 - lr: 0.000042 - momentum: 0.000000
2023-10-18 16:36:34,040 epoch 3 - iter 144/242 - loss 0.47877640 - time (sec): 2.10 - samples/sec: 6982.35 - lr: 0.000041 - momentum: 0.000000
2023-10-18 16:36:34,400 epoch 3 - iter 168/242 - loss 0.47198182 - time (sec): 2.46 - samples/sec: 6952.98 - lr: 0.000041 - momentum: 0.000000
2023-10-18 16:36:34,757 epoch 3 - iter 192/242 - loss 0.46892658 - time (sec): 2.82 - samples/sec: 6916.36 - lr: 0.000040 - momentum: 0.000000
2023-10-18 16:36:35,142 epoch 3 - iter 216/242 - loss 0.45945229 - time (sec): 3.20 - samples/sec: 6897.19 - lr: 0.000040 - momentum: 0.000000
2023-10-18 16:36:35,519 epoch 3 - iter 240/242 - loss 0.45603902 - time (sec): 3.58 - samples/sec: 6859.49 - lr: 0.000039 - momentum: 0.000000
2023-10-18 16:36:35,546 ----------------------------------------------------------------------------------------------------
2023-10-18 16:36:35,547 EPOCH 3 done: loss 0.4571 - lr: 0.000039
2023-10-18 16:36:35,977 DEV : loss 0.3233063220977783 - f1-score (micro avg)  0.4841
2023-10-18 16:36:35,981 saving best model
2023-10-18 16:36:36,017 ----------------------------------------------------------------------------------------------------
2023-10-18 16:36:36,391 epoch 4 - iter 24/242 - loss 0.45516957 - time (sec): 0.37 - samples/sec: 7271.44 - lr: 0.000038 - momentum: 0.000000
2023-10-18 16:36:36,760 epoch 4 - iter 48/242 - loss 0.40167627 - time (sec): 0.74 - samples/sec: 6707.20 - lr: 0.000038 - momentum: 0.000000
2023-10-18 16:36:37,131 epoch 4 - iter 72/242 - loss 0.40130941 - time (sec): 1.11 - samples/sec: 6552.25 - lr: 0.000037 - momentum: 0.000000
2023-10-18 16:36:37,514 epoch 4 - iter 96/242 - loss 0.39325755 - time (sec): 1.50 - samples/sec: 6506.63 - lr: 0.000037 - momentum: 0.000000
2023-10-18 16:36:37,903 epoch 4 - iter 120/242 - loss 0.38875783 - time (sec): 1.88 - samples/sec: 6623.69 - lr: 0.000036 - momentum: 0.000000
2023-10-18 16:36:38,271 epoch 4 - iter 144/242 - loss 0.38181180 - time (sec): 2.25 - samples/sec: 6590.83 - lr: 0.000036 - momentum: 0.000000
2023-10-18 16:36:38,647 epoch 4 - iter 168/242 - loss 0.37363013 - time (sec): 2.63 - samples/sec: 6529.96 - lr: 0.000035 - momentum: 0.000000
2023-10-18 16:36:39,013 epoch 4 - iter 192/242 - loss 0.36751058 - time (sec): 3.00 - samples/sec: 6612.55 - lr: 0.000035 - momentum: 0.000000
2023-10-18 16:36:39,388 epoch 4 - iter 216/242 - loss 0.37614560 - time (sec): 3.37 - samples/sec: 6580.07 - lr: 0.000034 - momentum: 0.000000
2023-10-18 16:36:39,751 epoch 4 - iter 240/242 - loss 0.37512641 - time (sec): 3.73 - samples/sec: 6591.02 - lr: 0.000033 - momentum: 0.000000
2023-10-18 16:36:39,779 ----------------------------------------------------------------------------------------------------
2023-10-18 16:36:39,779 EPOCH 4 done: loss 0.3752 - lr: 0.000033
2023-10-18 16:36:40,207 DEV : loss 0.2869265079498291 - f1-score (micro avg)  0.4813
2023-10-18 16:36:40,211 ----------------------------------------------------------------------------------------------------
2023-10-18 16:36:40,588 epoch 5 - iter 24/242 - loss 0.34496146 - time (sec): 0.38 - samples/sec: 6220.26 - lr: 0.000033 - momentum: 0.000000
2023-10-18 16:36:40,973 epoch 5 - iter 48/242 - loss 0.34981845 - time (sec): 0.76 - samples/sec: 6280.07 - lr: 0.000032 - momentum: 0.000000
2023-10-18 16:36:41,332 epoch 5 - iter 72/242 - loss 0.34066324 - time (sec): 1.12 - samples/sec: 6387.39 - lr: 0.000032 - momentum: 0.000000
2023-10-18 16:36:41,722 epoch 5 - iter 96/242 - loss 0.34406469 - time (sec): 1.51 - samples/sec: 6597.13 - lr: 0.000031 - momentum: 0.000000
2023-10-18 16:36:42,097 epoch 5 - iter 120/242 - loss 0.34773483 - time (sec): 1.89 - samples/sec: 6664.73 - lr: 0.000031 - momentum: 0.000000
2023-10-18 16:36:42,484 epoch 5 - iter 144/242 - loss 0.34325992 - time (sec): 2.27 - samples/sec: 6613.90 - lr: 0.000030 - momentum: 0.000000
2023-10-18 16:36:42,869 epoch 5 - iter 168/242 - loss 0.34035695 - time (sec): 2.66 - samples/sec: 6510.16 - lr: 0.000030 - momentum: 0.000000
2023-10-18 16:36:43,256 epoch 5 - iter 192/242 - loss 0.33886687 - time (sec): 3.04 - samples/sec: 6527.83 - lr: 0.000029 - momentum: 0.000000
2023-10-18 16:36:43,626 epoch 5 - iter 216/242 - loss 0.34406810 - time (sec): 3.41 - samples/sec: 6519.10 - lr: 0.000028 - momentum: 0.000000
2023-10-18 16:36:43,992 epoch 5 - iter 240/242 - loss 0.33921636 - time (sec): 3.78 - samples/sec: 6507.41 - lr: 0.000028 - momentum: 0.000000
2023-10-18 16:36:44,020 ----------------------------------------------------------------------------------------------------
2023-10-18 16:36:44,020 EPOCH 5 done: loss 0.3406 - lr: 0.000028
2023-10-18 16:36:44,444 DEV : loss 0.2742924690246582 - f1-score (micro avg)  0.4738
2023-10-18 16:36:44,449 ----------------------------------------------------------------------------------------------------
2023-10-18 16:36:44,817 epoch 6 - iter 24/242 - loss 0.31470992 - time (sec): 0.37 - samples/sec: 6960.30 - lr: 0.000027 - momentum: 0.000000
2023-10-18 16:36:45,180 epoch 6 - iter 48/242 - loss 0.33456371 - time (sec): 0.73 - samples/sec: 7029.92 - lr: 0.000027 - momentum: 0.000000
2023-10-18 16:36:45,545 epoch 6 - iter 72/242 - loss 0.30996261 - time (sec): 1.10 - samples/sec: 6973.68 - lr: 0.000026 - momentum: 0.000000
2023-10-18 16:36:45,924 epoch 6 - iter 96/242 - loss 0.31807708 - time (sec): 1.48 - samples/sec: 6892.55 - lr: 0.000026 - momentum: 0.000000
2023-10-18 16:36:46,313 epoch 6 - iter 120/242 - loss 0.31619253 - time (sec): 1.86 - samples/sec: 6800.34 - lr: 0.000025 - momentum: 0.000000
2023-10-18 16:36:46,706 epoch 6 - iter 144/242 - loss 0.30833559 - time (sec): 2.26 - samples/sec: 6714.31 - lr: 0.000025 - momentum: 0.000000
2023-10-18 16:36:47,071 epoch 6 - iter 168/242 - loss 0.30530212 - time (sec): 2.62 - samples/sec: 6621.78 - lr: 0.000024 - momentum: 0.000000
2023-10-18 16:36:47,459 epoch 6 - iter 192/242 - loss 0.31101338 - time (sec): 3.01 - samples/sec: 6580.76 - lr: 0.000023 - momentum: 0.000000
2023-10-18 16:36:47,826 epoch 6 - iter 216/242 - loss 0.31555222 - time (sec): 3.38 - samples/sec: 6603.40 - lr: 0.000023 - momentum: 0.000000
2023-10-18 16:36:48,218 epoch 6 - iter 240/242 - loss 0.31269087 - time (sec): 3.77 - samples/sec: 6528.91 - lr: 0.000022 - momentum: 0.000000
2023-10-18 16:36:48,243 ----------------------------------------------------------------------------------------------------
2023-10-18 16:36:48,243 EPOCH 6 done: loss 0.3112 - lr: 0.000022
2023-10-18 16:36:48,681 DEV : loss 0.25722795724868774 - f1-score (micro avg)  0.4952
2023-10-18 16:36:48,685 saving best model
2023-10-18 16:36:48,721 ----------------------------------------------------------------------------------------------------
2023-10-18 16:36:49,070 epoch 7 - iter 24/242 - loss 0.28473485 - time (sec): 0.35 - samples/sec: 8026.85 - lr: 0.000022 - momentum: 0.000000
2023-10-18 16:36:49,410 epoch 7 - iter 48/242 - loss 0.28032042 - time (sec): 0.69 - samples/sec: 7682.13 - lr: 0.000021 - momentum: 0.000000
2023-10-18 16:36:49,749 epoch 7 - iter 72/242 - loss 0.28315683 - time (sec): 1.03 - samples/sec: 7471.26 - lr: 0.000021 - momentum: 0.000000
2023-10-18 16:36:50,084 epoch 7 - iter 96/242 - loss 0.29487916 - time (sec): 1.36 - samples/sec: 7312.20 - lr: 0.000020 - momentum: 0.000000
2023-10-18 16:36:50,414 epoch 7 - iter 120/242 - loss 0.29815540 - time (sec): 1.69 - samples/sec: 7239.42 - lr: 0.000020 - momentum: 0.000000
2023-10-18 16:36:50,787 epoch 7 - iter 144/242 - loss 0.29268716 - time (sec): 2.06 - samples/sec: 7062.20 - lr: 0.000019 - momentum: 0.000000
2023-10-18 16:36:51,176 epoch 7 - iter 168/242 - loss 0.29539971 - time (sec): 2.45 - samples/sec: 6963.28 - lr: 0.000018 - momentum: 0.000000
2023-10-18 16:36:51,556 epoch 7 - iter 192/242 - loss 0.29791900 - time (sec): 2.83 - samples/sec: 6917.39 - lr: 0.000018 - momentum: 0.000000
2023-10-18 16:36:51,946 epoch 7 - iter 216/242 - loss 0.29986562 - time (sec): 3.22 - samples/sec: 6849.24 - lr: 0.000017 - momentum: 0.000000
2023-10-18 16:36:52,324 epoch 7 - iter 240/242 - loss 0.29782140 - time (sec): 3.60 - samples/sec: 6830.49 - lr: 0.000017 - momentum: 0.000000
2023-10-18 16:36:52,351 ----------------------------------------------------------------------------------------------------
2023-10-18 16:36:52,352 EPOCH 7 done: loss 0.2979 - lr: 0.000017
2023-10-18 16:36:52,783 DEV : loss 0.2522064745426178 - f1-score (micro avg)  0.5171
2023-10-18 16:36:52,787 saving best model
2023-10-18 16:36:52,823 ----------------------------------------------------------------------------------------------------
2023-10-18 16:36:53,199 epoch 8 - iter 24/242 - loss 0.41692853 - time (sec): 0.37 - samples/sec: 7290.35 - lr: 0.000016 - momentum: 0.000000
2023-10-18 16:36:53,552 epoch 8 - iter 48/242 - loss 0.35604078 - time (sec): 0.73 - samples/sec: 6821.61 - lr: 0.000016 - momentum: 0.000000
2023-10-18 16:36:53,915 epoch 8 - iter 72/242 - loss 0.32862463 - time (sec): 1.09 - samples/sec: 6801.12 - lr: 0.000015 - momentum: 0.000000
2023-10-18 16:36:54,296 epoch 8 - iter 96/242 - loss 0.30818150 - time (sec): 1.47 - samples/sec: 6767.13 - lr: 0.000015 - momentum: 0.000000
2023-10-18 16:36:54,674 epoch 8 - iter 120/242 - loss 0.29987867 - time (sec): 1.85 - samples/sec: 6785.04 - lr: 0.000014 - momentum: 0.000000
2023-10-18 16:36:55,043 epoch 8 - iter 144/242 - loss 0.29155435 - time (sec): 2.22 - samples/sec: 6669.29 - lr: 0.000013 - momentum: 0.000000
2023-10-18 16:36:55,419 epoch 8 - iter 168/242 - loss 0.28828688 - time (sec): 2.60 - samples/sec: 6654.60 - lr: 0.000013 - momentum: 0.000000
2023-10-18 16:36:55,807 epoch 8 - iter 192/242 - loss 0.28787647 - time (sec): 2.98 - samples/sec: 6646.64 - lr: 0.000012 - momentum: 0.000000
2023-10-18 16:36:56,187 epoch 8 - iter 216/242 - loss 0.29399445 - time (sec): 3.36 - samples/sec: 6649.16 - lr: 0.000012 - momentum: 0.000000
2023-10-18 16:36:56,576 epoch 8 - iter 240/242 - loss 0.28922123 - time (sec): 3.75 - samples/sec: 6566.51 - lr: 0.000011 - momentum: 0.000000
2023-10-18 16:36:56,606 ----------------------------------------------------------------------------------------------------
2023-10-18 16:36:56,607 EPOCH 8 done: loss 0.2887 - lr: 0.000011
2023-10-18 16:36:57,041 DEV : loss 0.2508045434951782 - f1-score (micro avg)  0.5126
2023-10-18 16:36:57,045 ----------------------------------------------------------------------------------------------------
2023-10-18 16:36:57,407 epoch 9 - iter 24/242 - loss 0.31471641 - time (sec): 0.36 - samples/sec: 6546.29 - lr: 0.000011 - momentum: 0.000000
2023-10-18 16:36:57,779 epoch 9 - iter 48/242 - loss 0.30325743 - time (sec): 0.73 - samples/sec: 6389.28 - lr: 0.000010 - momentum: 0.000000
2023-10-18 16:36:58,145 epoch 9 - iter 72/242 - loss 0.28445914 - time (sec): 1.10 - samples/sec: 6611.58 - lr: 0.000010 - momentum: 0.000000
2023-10-18 16:36:58,499 epoch 9 - iter 96/242 - loss 0.27733067 - time (sec): 1.45 - samples/sec: 6587.85 - lr: 0.000009 - momentum: 0.000000
2023-10-18 16:36:58,857 epoch 9 - iter 120/242 - loss 0.28394335 - time (sec): 1.81 - samples/sec: 6657.66 - lr: 0.000008 - momentum: 0.000000
2023-10-18 16:36:59,226 epoch 9 - iter 144/242 - loss 0.28730005 - time (sec): 2.18 - samples/sec: 6708.11 - lr: 0.000008 - momentum: 0.000000
2023-10-18 16:36:59,592 epoch 9 - iter 168/242 - loss 0.29711454 - time (sec): 2.55 - samples/sec: 6718.46 - lr: 0.000007 - momentum: 0.000000
2023-10-18 16:36:59,962 epoch 9 - iter 192/242 - loss 0.29329494 - time (sec): 2.92 - samples/sec: 6707.05 - lr: 0.000007 - momentum: 0.000000
2023-10-18 16:37:00,335 epoch 9 - iter 216/242 - loss 0.28875404 - time (sec): 3.29 - samples/sec: 6731.96 - lr: 0.000006 - momentum: 0.000000
2023-10-18 16:37:00,702 epoch 9 - iter 240/242 - loss 0.28175821 - time (sec): 3.66 - samples/sec: 6731.70 - lr: 0.000006 - momentum: 0.000000
2023-10-18 16:37:00,729 ----------------------------------------------------------------------------------------------------
2023-10-18 16:37:00,729 EPOCH 9 done: loss 0.2822 - lr: 0.000006
2023-10-18 16:37:01,161 DEV : loss 0.24359287321567535 - f1-score (micro avg)  0.5346
2023-10-18 16:37:01,166 saving best model
2023-10-18 16:37:01,200 ----------------------------------------------------------------------------------------------------
2023-10-18 16:37:01,568 epoch 10 - iter 24/242 - loss 0.26971381 - time (sec): 0.37 - samples/sec: 5710.03 - lr: 0.000005 - momentum: 0.000000
2023-10-18 16:37:01,933 epoch 10 - iter 48/242 - loss 0.27723315 - time (sec): 0.73 - samples/sec: 6180.39 - lr: 0.000005 - momentum: 0.000000
2023-10-18 16:37:02,292 epoch 10 - iter 72/242 - loss 0.27734124 - time (sec): 1.09 - samples/sec: 6415.68 - lr: 0.000004 - momentum: 0.000000
2023-10-18 16:37:02,665 epoch 10 - iter 96/242 - loss 0.28231197 - time (sec): 1.46 - samples/sec: 6552.71 - lr: 0.000003 - momentum: 0.000000
2023-10-18 16:37:03,035 epoch 10 - iter 120/242 - loss 0.27821230 - time (sec): 1.83 - samples/sec: 6595.37 - lr: 0.000003 - momentum: 0.000000
2023-10-18 16:37:03,427 epoch 10 - iter 144/242 - loss 0.27186754 - time (sec): 2.23 - samples/sec: 6586.10 - lr: 0.000002 - momentum: 0.000000
2023-10-18 16:37:03,804 epoch 10 - iter 168/242 - loss 0.27995109 - time (sec): 2.60 - samples/sec: 6562.68 - lr: 0.000002 - momentum: 0.000000
2023-10-18 16:37:04,180 epoch 10 - iter 192/242 - loss 0.28424878 - time (sec): 2.98 - samples/sec: 6557.62 - lr: 0.000001 - momentum: 0.000000
2023-10-18 16:37:04,562 epoch 10 - iter 216/242 - loss 0.27775247 - time (sec): 3.36 - samples/sec: 6536.76 - lr: 0.000001 - momentum: 0.000000
2023-10-18 16:37:04,904 epoch 10 - iter 240/242 - loss 0.27507515 - time (sec): 3.70 - samples/sec: 6662.50 - lr: 0.000000 - momentum: 0.000000
2023-10-18 16:37:04,927 ----------------------------------------------------------------------------------------------------
2023-10-18 16:37:04,927 EPOCH 10 done: loss 0.2750 - lr: 0.000000
2023-10-18 16:37:05,368 DEV : loss 0.2437872439622879 - f1-score (micro avg)  0.5329
2023-10-18 16:37:05,400 ----------------------------------------------------------------------------------------------------
2023-10-18 16:37:05,401 Loading model from best epoch ...
2023-10-18 16:37:05,478 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-18 16:37:05,894 
Results:
- F-score (micro) 0.4903
- F-score (macro) 0.2649
- Accuracy 0.3486

By class:
              precision    recall  f1-score   support

       scope     0.3547    0.5581    0.4337       129
        pers     0.5707    0.7554    0.6502       139
        work     0.4643    0.1625    0.2407        80
         loc     0.0000    0.0000    0.0000         9
        date     0.0000    0.0000    0.0000         3

   micro avg     0.4578    0.5278    0.4903       360
   macro avg     0.2779    0.2952    0.2649       360
weighted avg     0.4506    0.5278    0.4600       360

2023-10-18 16:37:05,895 ----------------------------------------------------------------------------------------------------