File size: 23,906 Bytes
b743d26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
2023-10-18 16:37:46,705 ----------------------------------------------------------------------------------------------------
2023-10-18 16:37:46,706 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 128)
        (position_embeddings): Embedding(512, 128)
        (token_type_embeddings): Embedding(2, 128)
        (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-1): 2 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=128, out_features=128, bias=True)
                (key): Linear(in_features=128, out_features=128, bias=True)
                (value): Linear(in_features=128, out_features=128, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=128, out_features=128, bias=True)
                (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=128, out_features=512, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=512, out_features=128, bias=True)
              (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=128, out_features=128, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=128, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-18 16:37:46,706 ----------------------------------------------------------------------------------------------------
2023-10-18 16:37:46,706 MultiCorpus: 966 train + 219 dev + 204 test sentences
 - NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-18 16:37:46,706 ----------------------------------------------------------------------------------------------------
2023-10-18 16:37:46,706 Train:  966 sentences
2023-10-18 16:37:46,706         (train_with_dev=False, train_with_test=False)
2023-10-18 16:37:46,706 ----------------------------------------------------------------------------------------------------
2023-10-18 16:37:46,706 Training Params:
2023-10-18 16:37:46,706  - learning_rate: "5e-05" 
2023-10-18 16:37:46,706  - mini_batch_size: "8"
2023-10-18 16:37:46,706  - max_epochs: "10"
2023-10-18 16:37:46,706  - shuffle: "True"
2023-10-18 16:37:46,706 ----------------------------------------------------------------------------------------------------
2023-10-18 16:37:46,706 Plugins:
2023-10-18 16:37:46,706  - TensorboardLogger
2023-10-18 16:37:46,706  - LinearScheduler | warmup_fraction: '0.1'
2023-10-18 16:37:46,706 ----------------------------------------------------------------------------------------------------
2023-10-18 16:37:46,706 Final evaluation on model from best epoch (best-model.pt)
2023-10-18 16:37:46,706  - metric: "('micro avg', 'f1-score')"
2023-10-18 16:37:46,706 ----------------------------------------------------------------------------------------------------
2023-10-18 16:37:46,706 Computation:
2023-10-18 16:37:46,707  - compute on device: cuda:0
2023-10-18 16:37:46,707  - embedding storage: none
2023-10-18 16:37:46,707 ----------------------------------------------------------------------------------------------------
2023-10-18 16:37:46,707 Model training base path: "hmbench-ajmc/fr-dbmdz/bert-tiny-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1"
2023-10-18 16:37:46,707 ----------------------------------------------------------------------------------------------------
2023-10-18 16:37:46,707 ----------------------------------------------------------------------------------------------------
2023-10-18 16:37:46,707 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-18 16:37:46,983 epoch 1 - iter 12/121 - loss 4.06423244 - time (sec): 0.28 - samples/sec: 9156.40 - lr: 0.000005 - momentum: 0.000000
2023-10-18 16:37:47,262 epoch 1 - iter 24/121 - loss 3.89967677 - time (sec): 0.55 - samples/sec: 8881.22 - lr: 0.000010 - momentum: 0.000000
2023-10-18 16:37:47,552 epoch 1 - iter 36/121 - loss 3.84560872 - time (sec): 0.84 - samples/sec: 8947.53 - lr: 0.000014 - momentum: 0.000000
2023-10-18 16:37:47,838 epoch 1 - iter 48/121 - loss 3.71254191 - time (sec): 1.13 - samples/sec: 9182.28 - lr: 0.000019 - momentum: 0.000000
2023-10-18 16:37:48,099 epoch 1 - iter 60/121 - loss 3.57296790 - time (sec): 1.39 - samples/sec: 8964.72 - lr: 0.000024 - momentum: 0.000000
2023-10-18 16:37:48,369 epoch 1 - iter 72/121 - loss 3.42366005 - time (sec): 1.66 - samples/sec: 8935.77 - lr: 0.000029 - momentum: 0.000000
2023-10-18 16:37:48,633 epoch 1 - iter 84/121 - loss 3.24611854 - time (sec): 1.93 - samples/sec: 8911.86 - lr: 0.000034 - momentum: 0.000000
2023-10-18 16:37:48,899 epoch 1 - iter 96/121 - loss 3.03337096 - time (sec): 2.19 - samples/sec: 8930.89 - lr: 0.000039 - momentum: 0.000000
2023-10-18 16:37:49,163 epoch 1 - iter 108/121 - loss 2.81189925 - time (sec): 2.46 - samples/sec: 9074.53 - lr: 0.000044 - momentum: 0.000000
2023-10-18 16:37:49,435 epoch 1 - iter 120/121 - loss 2.63276419 - time (sec): 2.73 - samples/sec: 8999.91 - lr: 0.000049 - momentum: 0.000000
2023-10-18 16:37:49,455 ----------------------------------------------------------------------------------------------------
2023-10-18 16:37:49,455 EPOCH 1 done: loss 2.6200 - lr: 0.000049
2023-10-18 16:37:49,966 DEV : loss 0.6585149765014648 - f1-score (micro avg)  0.0
2023-10-18 16:37:49,970 ----------------------------------------------------------------------------------------------------
2023-10-18 16:37:50,235 epoch 2 - iter 12/121 - loss 0.79443559 - time (sec): 0.26 - samples/sec: 9359.92 - lr: 0.000049 - momentum: 0.000000
2023-10-18 16:37:50,516 epoch 2 - iter 24/121 - loss 0.81201782 - time (sec): 0.54 - samples/sec: 9591.10 - lr: 0.000049 - momentum: 0.000000
2023-10-18 16:37:50,789 epoch 2 - iter 36/121 - loss 0.76364936 - time (sec): 0.82 - samples/sec: 9742.55 - lr: 0.000048 - momentum: 0.000000
2023-10-18 16:37:51,053 epoch 2 - iter 48/121 - loss 0.73351545 - time (sec): 1.08 - samples/sec: 9830.85 - lr: 0.000048 - momentum: 0.000000
2023-10-18 16:37:51,306 epoch 2 - iter 60/121 - loss 0.72650713 - time (sec): 1.33 - samples/sec: 9403.27 - lr: 0.000047 - momentum: 0.000000
2023-10-18 16:37:51,569 epoch 2 - iter 72/121 - loss 0.71917414 - time (sec): 1.60 - samples/sec: 9209.16 - lr: 0.000047 - momentum: 0.000000
2023-10-18 16:37:51,857 epoch 2 - iter 84/121 - loss 0.71563670 - time (sec): 1.89 - samples/sec: 9047.31 - lr: 0.000046 - momentum: 0.000000
2023-10-18 16:37:52,141 epoch 2 - iter 96/121 - loss 0.71831549 - time (sec): 2.17 - samples/sec: 9064.31 - lr: 0.000046 - momentum: 0.000000
2023-10-18 16:37:52,417 epoch 2 - iter 108/121 - loss 0.70583269 - time (sec): 2.45 - samples/sec: 9050.50 - lr: 0.000045 - momentum: 0.000000
2023-10-18 16:37:52,694 epoch 2 - iter 120/121 - loss 0.68450949 - time (sec): 2.72 - samples/sec: 9031.31 - lr: 0.000045 - momentum: 0.000000
2023-10-18 16:37:52,716 ----------------------------------------------------------------------------------------------------
2023-10-18 16:37:52,716 EPOCH 2 done: loss 0.6847 - lr: 0.000045
2023-10-18 16:37:53,147 DEV : loss 0.5573856234550476 - f1-score (micro avg)  0.0
2023-10-18 16:37:53,152 ----------------------------------------------------------------------------------------------------
2023-10-18 16:37:53,431 epoch 3 - iter 12/121 - loss 0.57685052 - time (sec): 0.28 - samples/sec: 8896.62 - lr: 0.000044 - momentum: 0.000000
2023-10-18 16:37:53,691 epoch 3 - iter 24/121 - loss 0.59677529 - time (sec): 0.54 - samples/sec: 8619.78 - lr: 0.000043 - momentum: 0.000000
2023-10-18 16:37:53,962 epoch 3 - iter 36/121 - loss 0.62216977 - time (sec): 0.81 - samples/sec: 8603.50 - lr: 0.000043 - momentum: 0.000000
2023-10-18 16:37:54,232 epoch 3 - iter 48/121 - loss 0.61021734 - time (sec): 1.08 - samples/sec: 8793.59 - lr: 0.000042 - momentum: 0.000000
2023-10-18 16:37:54,507 epoch 3 - iter 60/121 - loss 0.60690012 - time (sec): 1.36 - samples/sec: 8787.69 - lr: 0.000042 - momentum: 0.000000
2023-10-18 16:37:54,781 epoch 3 - iter 72/121 - loss 0.57933023 - time (sec): 1.63 - samples/sec: 8993.46 - lr: 0.000041 - momentum: 0.000000
2023-10-18 16:37:55,051 epoch 3 - iter 84/121 - loss 0.57146458 - time (sec): 1.90 - samples/sec: 9003.22 - lr: 0.000041 - momentum: 0.000000
2023-10-18 16:37:55,325 epoch 3 - iter 96/121 - loss 0.56608970 - time (sec): 2.17 - samples/sec: 8961.15 - lr: 0.000040 - momentum: 0.000000
2023-10-18 16:37:55,601 epoch 3 - iter 108/121 - loss 0.55476563 - time (sec): 2.45 - samples/sec: 9013.13 - lr: 0.000040 - momentum: 0.000000
2023-10-18 16:37:55,881 epoch 3 - iter 120/121 - loss 0.55137957 - time (sec): 2.73 - samples/sec: 8992.62 - lr: 0.000039 - momentum: 0.000000
2023-10-18 16:37:55,904 ----------------------------------------------------------------------------------------------------
2023-10-18 16:37:55,904 EPOCH 3 done: loss 0.5512 - lr: 0.000039
2023-10-18 16:37:56,333 DEV : loss 0.42163369059562683 - f1-score (micro avg)  0.2788
2023-10-18 16:37:56,337 saving best model
2023-10-18 16:37:56,366 ----------------------------------------------------------------------------------------------------
2023-10-18 16:37:56,647 epoch 4 - iter 12/121 - loss 0.54623942 - time (sec): 0.28 - samples/sec: 9667.83 - lr: 0.000038 - momentum: 0.000000
2023-10-18 16:37:56,927 epoch 4 - iter 24/121 - loss 0.50675691 - time (sec): 0.56 - samples/sec: 8891.17 - lr: 0.000038 - momentum: 0.000000
2023-10-18 16:37:57,194 epoch 4 - iter 36/121 - loss 0.49893346 - time (sec): 0.83 - samples/sec: 8816.67 - lr: 0.000037 - momentum: 0.000000
2023-10-18 16:37:57,468 epoch 4 - iter 48/121 - loss 0.48315990 - time (sec): 1.10 - samples/sec: 8837.45 - lr: 0.000037 - momentum: 0.000000
2023-10-18 16:37:57,752 epoch 4 - iter 60/121 - loss 0.47606222 - time (sec): 1.39 - samples/sec: 9010.30 - lr: 0.000036 - momentum: 0.000000
2023-10-18 16:37:58,025 epoch 4 - iter 72/121 - loss 0.46853704 - time (sec): 1.66 - samples/sec: 8954.16 - lr: 0.000036 - momentum: 0.000000
2023-10-18 16:37:58,294 epoch 4 - iter 84/121 - loss 0.45908363 - time (sec): 1.93 - samples/sec: 8907.61 - lr: 0.000035 - momentum: 0.000000
2023-10-18 16:37:58,567 epoch 4 - iter 96/121 - loss 0.45593541 - time (sec): 2.20 - samples/sec: 9001.07 - lr: 0.000035 - momentum: 0.000000
2023-10-18 16:37:58,829 epoch 4 - iter 108/121 - loss 0.46075997 - time (sec): 2.46 - samples/sec: 9004.61 - lr: 0.000034 - momentum: 0.000000
2023-10-18 16:37:59,109 epoch 4 - iter 120/121 - loss 0.45718074 - time (sec): 2.74 - samples/sec: 8973.14 - lr: 0.000034 - momentum: 0.000000
2023-10-18 16:37:59,127 ----------------------------------------------------------------------------------------------------
2023-10-18 16:37:59,128 EPOCH 4 done: loss 0.4567 - lr: 0.000034
2023-10-18 16:37:59,559 DEV : loss 0.3446199297904968 - f1-score (micro avg)  0.4725
2023-10-18 16:37:59,563 saving best model
2023-10-18 16:37:59,597 ----------------------------------------------------------------------------------------------------
2023-10-18 16:37:59,856 epoch 5 - iter 12/121 - loss 0.41508969 - time (sec): 0.26 - samples/sec: 9044.81 - lr: 0.000033 - momentum: 0.000000
2023-10-18 16:38:00,125 epoch 5 - iter 24/121 - loss 0.42994677 - time (sec): 0.53 - samples/sec: 9060.25 - lr: 0.000032 - momentum: 0.000000
2023-10-18 16:38:00,394 epoch 5 - iter 36/121 - loss 0.41473805 - time (sec): 0.80 - samples/sec: 8980.16 - lr: 0.000032 - momentum: 0.000000
2023-10-18 16:38:00,679 epoch 5 - iter 48/121 - loss 0.40379782 - time (sec): 1.08 - samples/sec: 9215.40 - lr: 0.000031 - momentum: 0.000000
2023-10-18 16:38:00,951 epoch 5 - iter 60/121 - loss 0.40918990 - time (sec): 1.35 - samples/sec: 9280.53 - lr: 0.000031 - momentum: 0.000000
2023-10-18 16:38:01,228 epoch 5 - iter 72/121 - loss 0.40526997 - time (sec): 1.63 - samples/sec: 9214.71 - lr: 0.000030 - momentum: 0.000000
2023-10-18 16:38:01,493 epoch 5 - iter 84/121 - loss 0.40300316 - time (sec): 1.90 - samples/sec: 9127.93 - lr: 0.000030 - momentum: 0.000000
2023-10-18 16:38:01,763 epoch 5 - iter 96/121 - loss 0.39720734 - time (sec): 2.17 - samples/sec: 9178.51 - lr: 0.000029 - momentum: 0.000000
2023-10-18 16:38:02,034 epoch 5 - iter 108/121 - loss 0.40050812 - time (sec): 2.44 - samples/sec: 9133.80 - lr: 0.000029 - momentum: 0.000000
2023-10-18 16:38:02,305 epoch 5 - iter 120/121 - loss 0.39605476 - time (sec): 2.71 - samples/sec: 9086.62 - lr: 0.000028 - momentum: 0.000000
2023-10-18 16:38:02,322 ----------------------------------------------------------------------------------------------------
2023-10-18 16:38:02,322 EPOCH 5 done: loss 0.3973 - lr: 0.000028
2023-10-18 16:38:02,752 DEV : loss 0.3135037422180176 - f1-score (micro avg)  0.4919
2023-10-18 16:38:02,756 saving best model
2023-10-18 16:38:02,789 ----------------------------------------------------------------------------------------------------
2023-10-18 16:38:03,066 epoch 6 - iter 12/121 - loss 0.35254438 - time (sec): 0.28 - samples/sec: 9292.40 - lr: 0.000027 - momentum: 0.000000
2023-10-18 16:38:03,341 epoch 6 - iter 24/121 - loss 0.36693620 - time (sec): 0.55 - samples/sec: 9320.89 - lr: 0.000027 - momentum: 0.000000
2023-10-18 16:38:03,609 epoch 6 - iter 36/121 - loss 0.36194737 - time (sec): 0.82 - samples/sec: 9335.62 - lr: 0.000026 - momentum: 0.000000
2023-10-18 16:38:03,900 epoch 6 - iter 48/121 - loss 0.37128051 - time (sec): 1.11 - samples/sec: 9156.22 - lr: 0.000026 - momentum: 0.000000
2023-10-18 16:38:04,178 epoch 6 - iter 60/121 - loss 0.36331801 - time (sec): 1.39 - samples/sec: 9133.13 - lr: 0.000025 - momentum: 0.000000
2023-10-18 16:38:04,448 epoch 6 - iter 72/121 - loss 0.35824236 - time (sec): 1.66 - samples/sec: 9138.92 - lr: 0.000025 - momentum: 0.000000
2023-10-18 16:38:04,717 epoch 6 - iter 84/121 - loss 0.35498454 - time (sec): 1.93 - samples/sec: 9010.20 - lr: 0.000024 - momentum: 0.000000
2023-10-18 16:38:04,989 epoch 6 - iter 96/121 - loss 0.36536908 - time (sec): 2.20 - samples/sec: 9007.78 - lr: 0.000024 - momentum: 0.000000
2023-10-18 16:38:05,265 epoch 6 - iter 108/121 - loss 0.37179129 - time (sec): 2.47 - samples/sec: 9011.06 - lr: 0.000023 - momentum: 0.000000
2023-10-18 16:38:05,560 epoch 6 - iter 120/121 - loss 0.36874895 - time (sec): 2.77 - samples/sec: 8883.11 - lr: 0.000022 - momentum: 0.000000
2023-10-18 16:38:05,578 ----------------------------------------------------------------------------------------------------
2023-10-18 16:38:05,578 EPOCH 6 done: loss 0.3670 - lr: 0.000022
2023-10-18 16:38:06,011 DEV : loss 0.29502981901168823 - f1-score (micro avg)  0.4904
2023-10-18 16:38:06,015 ----------------------------------------------------------------------------------------------------
2023-10-18 16:38:06,311 epoch 7 - iter 12/121 - loss 0.33538454 - time (sec): 0.30 - samples/sec: 9443.11 - lr: 0.000022 - momentum: 0.000000
2023-10-18 16:38:06,601 epoch 7 - iter 24/121 - loss 0.33269331 - time (sec): 0.59 - samples/sec: 9015.43 - lr: 0.000021 - momentum: 0.000000
2023-10-18 16:38:06,886 epoch 7 - iter 36/121 - loss 0.34057186 - time (sec): 0.87 - samples/sec: 8808.40 - lr: 0.000021 - momentum: 0.000000
2023-10-18 16:38:07,164 epoch 7 - iter 48/121 - loss 0.35006255 - time (sec): 1.15 - samples/sec: 8665.54 - lr: 0.000020 - momentum: 0.000000
2023-10-18 16:38:07,447 epoch 7 - iter 60/121 - loss 0.35051450 - time (sec): 1.43 - samples/sec: 8554.00 - lr: 0.000020 - momentum: 0.000000
2023-10-18 16:38:07,731 epoch 7 - iter 72/121 - loss 0.34679089 - time (sec): 1.72 - samples/sec: 8497.45 - lr: 0.000019 - momentum: 0.000000
2023-10-18 16:38:08,016 epoch 7 - iter 84/121 - loss 0.34961647 - time (sec): 2.00 - samples/sec: 8541.49 - lr: 0.000019 - momentum: 0.000000
2023-10-18 16:38:08,294 epoch 7 - iter 96/121 - loss 0.35121463 - time (sec): 2.28 - samples/sec: 8601.73 - lr: 0.000018 - momentum: 0.000000
2023-10-18 16:38:08,581 epoch 7 - iter 108/121 - loss 0.35352437 - time (sec): 2.57 - samples/sec: 8606.00 - lr: 0.000017 - momentum: 0.000000
2023-10-18 16:38:08,861 epoch 7 - iter 120/121 - loss 0.35152520 - time (sec): 2.84 - samples/sec: 8645.20 - lr: 0.000017 - momentum: 0.000000
2023-10-18 16:38:08,881 ----------------------------------------------------------------------------------------------------
2023-10-18 16:38:08,881 EPOCH 7 done: loss 0.3518 - lr: 0.000017
2023-10-18 16:38:09,312 DEV : loss 0.28431111574172974 - f1-score (micro avg)  0.4868
2023-10-18 16:38:09,316 ----------------------------------------------------------------------------------------------------
2023-10-18 16:38:09,610 epoch 8 - iter 12/121 - loss 0.47161874 - time (sec): 0.29 - samples/sec: 9319.18 - lr: 0.000016 - momentum: 0.000000
2023-10-18 16:38:09,888 epoch 8 - iter 24/121 - loss 0.39663415 - time (sec): 0.57 - samples/sec: 8686.15 - lr: 0.000016 - momentum: 0.000000
2023-10-18 16:38:10,184 epoch 8 - iter 36/121 - loss 0.37145716 - time (sec): 0.87 - samples/sec: 8550.75 - lr: 0.000015 - momentum: 0.000000
2023-10-18 16:38:10,456 epoch 8 - iter 48/121 - loss 0.35177998 - time (sec): 1.14 - samples/sec: 8736.95 - lr: 0.000015 - momentum: 0.000000
2023-10-18 16:38:10,738 epoch 8 - iter 60/121 - loss 0.34654712 - time (sec): 1.42 - samples/sec: 8830.25 - lr: 0.000014 - momentum: 0.000000
2023-10-18 16:38:11,013 epoch 8 - iter 72/121 - loss 0.34061403 - time (sec): 1.70 - samples/sec: 8720.62 - lr: 0.000014 - momentum: 0.000000
2023-10-18 16:38:11,301 epoch 8 - iter 84/121 - loss 0.33533672 - time (sec): 1.98 - samples/sec: 8702.28 - lr: 0.000013 - momentum: 0.000000
2023-10-18 16:38:11,582 epoch 8 - iter 96/121 - loss 0.33895771 - time (sec): 2.27 - samples/sec: 8751.23 - lr: 0.000013 - momentum: 0.000000
2023-10-18 16:38:11,865 epoch 8 - iter 108/121 - loss 0.34448416 - time (sec): 2.55 - samples/sec: 8773.46 - lr: 0.000012 - momentum: 0.000000
2023-10-18 16:38:12,143 epoch 8 - iter 120/121 - loss 0.34155459 - time (sec): 2.83 - samples/sec: 8715.12 - lr: 0.000011 - momentum: 0.000000
2023-10-18 16:38:12,162 ----------------------------------------------------------------------------------------------------
2023-10-18 16:38:12,162 EPOCH 8 done: loss 0.3409 - lr: 0.000011
2023-10-18 16:38:12,600 DEV : loss 0.277322381734848 - f1-score (micro avg)  0.4874
2023-10-18 16:38:12,604 ----------------------------------------------------------------------------------------------------
2023-10-18 16:38:12,826 epoch 9 - iter 12/121 - loss 0.36612372 - time (sec): 0.22 - samples/sec: 10690.18 - lr: 0.000011 - momentum: 0.000000
2023-10-18 16:38:13,049 epoch 9 - iter 24/121 - loss 0.35162201 - time (sec): 0.44 - samples/sec: 10550.48 - lr: 0.000010 - momentum: 0.000000
2023-10-18 16:38:13,291 epoch 9 - iter 36/121 - loss 0.34091714 - time (sec): 0.69 - samples/sec: 10582.62 - lr: 0.000010 - momentum: 0.000000
2023-10-18 16:38:13,549 epoch 9 - iter 48/121 - loss 0.32767882 - time (sec): 0.94 - samples/sec: 10136.48 - lr: 0.000009 - momentum: 0.000000
2023-10-18 16:38:13,819 epoch 9 - iter 60/121 - loss 0.33057948 - time (sec): 1.21 - samples/sec: 9924.73 - lr: 0.000009 - momentum: 0.000000
2023-10-18 16:38:14,083 epoch 9 - iter 72/121 - loss 0.32622971 - time (sec): 1.48 - samples/sec: 9892.74 - lr: 0.000008 - momentum: 0.000000
2023-10-18 16:38:14,356 epoch 9 - iter 84/121 - loss 0.33658856 - time (sec): 1.75 - samples/sec: 9768.35 - lr: 0.000008 - momentum: 0.000000
2023-10-18 16:38:14,633 epoch 9 - iter 96/121 - loss 0.33404051 - time (sec): 2.03 - samples/sec: 9642.83 - lr: 0.000007 - momentum: 0.000000
2023-10-18 16:38:14,922 epoch 9 - iter 108/121 - loss 0.32949463 - time (sec): 2.32 - samples/sec: 9555.83 - lr: 0.000006 - momentum: 0.000000
2023-10-18 16:38:15,203 epoch 9 - iter 120/121 - loss 0.32480974 - time (sec): 2.60 - samples/sec: 9472.42 - lr: 0.000006 - momentum: 0.000000
2023-10-18 16:38:15,221 ----------------------------------------------------------------------------------------------------
2023-10-18 16:38:15,221 EPOCH 9 done: loss 0.3259 - lr: 0.000006
2023-10-18 16:38:15,664 DEV : loss 0.2769020199775696 - f1-score (micro avg)  0.485
2023-10-18 16:38:15,669 ----------------------------------------------------------------------------------------------------
2023-10-18 16:38:15,941 epoch 10 - iter 12/121 - loss 0.31703877 - time (sec): 0.27 - samples/sec: 7708.05 - lr: 0.000005 - momentum: 0.000000
2023-10-18 16:38:16,205 epoch 10 - iter 24/121 - loss 0.32343603 - time (sec): 0.54 - samples/sec: 8437.40 - lr: 0.000005 - momentum: 0.000000
2023-10-18 16:38:16,478 epoch 10 - iter 36/121 - loss 0.32421369 - time (sec): 0.81 - samples/sec: 8652.52 - lr: 0.000004 - momentum: 0.000000
2023-10-18 16:38:16,753 epoch 10 - iter 48/121 - loss 0.33412753 - time (sec): 1.08 - samples/sec: 8854.06 - lr: 0.000004 - momentum: 0.000000
2023-10-18 16:38:17,025 epoch 10 - iter 60/121 - loss 0.32558920 - time (sec): 1.36 - samples/sec: 8915.05 - lr: 0.000003 - momentum: 0.000000
2023-10-18 16:38:17,304 epoch 10 - iter 72/121 - loss 0.31995198 - time (sec): 1.63 - samples/sec: 8966.51 - lr: 0.000003 - momentum: 0.000000
2023-10-18 16:38:17,583 epoch 10 - iter 84/121 - loss 0.33265760 - time (sec): 1.91 - samples/sec: 8922.66 - lr: 0.000002 - momentum: 0.000000
2023-10-18 16:38:17,849 epoch 10 - iter 96/121 - loss 0.33878559 - time (sec): 2.18 - samples/sec: 8962.03 - lr: 0.000001 - momentum: 0.000000
2023-10-18 16:38:18,113 epoch 10 - iter 108/121 - loss 0.33332984 - time (sec): 2.44 - samples/sec: 8989.20 - lr: 0.000001 - momentum: 0.000000
2023-10-18 16:38:18,396 epoch 10 - iter 120/121 - loss 0.32884184 - time (sec): 2.73 - samples/sec: 9047.08 - lr: 0.000000 - momentum: 0.000000
2023-10-18 16:38:18,413 ----------------------------------------------------------------------------------------------------
2023-10-18 16:38:18,413 EPOCH 10 done: loss 0.3288 - lr: 0.000000
2023-10-18 16:38:18,841 DEV : loss 0.2749263644218445 - f1-score (micro avg)  0.4808
2023-10-18 16:38:18,876 ----------------------------------------------------------------------------------------------------
2023-10-18 16:38:18,876 Loading model from best epoch ...
2023-10-18 16:38:18,958 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-18 16:38:19,355 
Results:
- F-score (micro) 0.4391
- F-score (macro) 0.2022
- Accuracy 0.2964

By class:
              precision    recall  f1-score   support

       scope     0.3500    0.4884    0.4078       129
        pers     0.5542    0.6619    0.6033       139
        work     0.0000    0.0000    0.0000        80
         loc     0.0000    0.0000    0.0000         9
        date     0.0000    0.0000    0.0000         3

   micro avg     0.4480    0.4306    0.4391       360
   macro avg     0.1808    0.2300    0.2022       360
weighted avg     0.3394    0.4306    0.3790       360

2023-10-18 16:38:19,355 ----------------------------------------------------------------------------------------------------