File size: 37,025 Bytes
5b29783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
2023-10-24 13:12:30,385 ----------------------------------------------------------------------------------------------------
2023-10-24 13:12:30,386 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(64001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (1): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (2): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (3): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (4): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (5): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (6): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (7): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (8): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (9): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (10): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (11): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=21, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-24 13:12:30,386 ----------------------------------------------------------------------------------------------------
2023-10-24 13:12:30,386 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences
 - NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator
2023-10-24 13:12:30,386 ----------------------------------------------------------------------------------------------------
2023-10-24 13:12:30,386 Train:  5901 sentences
2023-10-24 13:12:30,386         (train_with_dev=False, train_with_test=False)
2023-10-24 13:12:30,386 ----------------------------------------------------------------------------------------------------
2023-10-24 13:12:30,386 Training Params:
2023-10-24 13:12:30,386  - learning_rate: "3e-05" 
2023-10-24 13:12:30,386  - mini_batch_size: "8"
2023-10-24 13:12:30,386  - max_epochs: "10"
2023-10-24 13:12:30,386  - shuffle: "True"
2023-10-24 13:12:30,386 ----------------------------------------------------------------------------------------------------
2023-10-24 13:12:30,386 Plugins:
2023-10-24 13:12:30,387  - TensorboardLogger
2023-10-24 13:12:30,387  - LinearScheduler | warmup_fraction: '0.1'
2023-10-24 13:12:30,387 ----------------------------------------------------------------------------------------------------
2023-10-24 13:12:30,387 Final evaluation on model from best epoch (best-model.pt)
2023-10-24 13:12:30,387  - metric: "('micro avg', 'f1-score')"
2023-10-24 13:12:30,387 ----------------------------------------------------------------------------------------------------
2023-10-24 13:12:30,387 Computation:
2023-10-24 13:12:30,387  - compute on device: cuda:0
2023-10-24 13:12:30,387  - embedding storage: none
2023-10-24 13:12:30,387 ----------------------------------------------------------------------------------------------------
2023-10-24 13:12:30,387 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5"
2023-10-24 13:12:30,387 ----------------------------------------------------------------------------------------------------
2023-10-24 13:12:30,387 ----------------------------------------------------------------------------------------------------
2023-10-24 13:12:30,387 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-24 13:12:37,067 epoch 1 - iter 73/738 - loss 2.18161987 - time (sec): 6.68 - samples/sec: 2354.92 - lr: 0.000003 - momentum: 0.000000
2023-10-24 13:12:44,149 epoch 1 - iter 146/738 - loss 1.42985226 - time (sec): 13.76 - samples/sec: 2283.70 - lr: 0.000006 - momentum: 0.000000
2023-10-24 13:12:50,831 epoch 1 - iter 219/738 - loss 1.10599054 - time (sec): 20.44 - samples/sec: 2291.46 - lr: 0.000009 - momentum: 0.000000
2023-10-24 13:12:57,060 epoch 1 - iter 292/738 - loss 0.91769116 - time (sec): 26.67 - samples/sec: 2322.65 - lr: 0.000012 - momentum: 0.000000
2023-10-24 13:13:05,191 epoch 1 - iter 365/738 - loss 0.77452000 - time (sec): 34.80 - samples/sec: 2327.75 - lr: 0.000015 - momentum: 0.000000
2023-10-24 13:13:11,963 epoch 1 - iter 438/738 - loss 0.68331020 - time (sec): 41.58 - samples/sec: 2359.17 - lr: 0.000018 - momentum: 0.000000
2023-10-24 13:13:19,168 epoch 1 - iter 511/738 - loss 0.60818039 - time (sec): 48.78 - samples/sec: 2365.23 - lr: 0.000021 - momentum: 0.000000
2023-10-24 13:13:26,029 epoch 1 - iter 584/738 - loss 0.55818973 - time (sec): 55.64 - samples/sec: 2359.43 - lr: 0.000024 - momentum: 0.000000
2023-10-24 13:13:33,467 epoch 1 - iter 657/738 - loss 0.51160952 - time (sec): 63.08 - samples/sec: 2353.91 - lr: 0.000027 - momentum: 0.000000
2023-10-24 13:13:39,918 epoch 1 - iter 730/738 - loss 0.47724150 - time (sec): 69.53 - samples/sec: 2357.48 - lr: 0.000030 - momentum: 0.000000
2023-10-24 13:13:40,938 ----------------------------------------------------------------------------------------------------
2023-10-24 13:13:40,938 EPOCH 1 done: loss 0.4728 - lr: 0.000030
2023-10-24 13:13:47,154 DEV : loss 0.10554392635822296 - f1-score (micro avg)  0.7528
2023-10-24 13:13:47,175 saving best model
2023-10-24 13:13:47,725 ----------------------------------------------------------------------------------------------------
2023-10-24 13:13:54,266 epoch 2 - iter 73/738 - loss 0.13369869 - time (sec): 6.54 - samples/sec: 2400.65 - lr: 0.000030 - momentum: 0.000000
2023-10-24 13:14:01,134 epoch 2 - iter 146/738 - loss 0.13182120 - time (sec): 13.41 - samples/sec: 2353.28 - lr: 0.000029 - momentum: 0.000000
2023-10-24 13:14:07,956 epoch 2 - iter 219/738 - loss 0.13189987 - time (sec): 20.23 - samples/sec: 2362.32 - lr: 0.000029 - momentum: 0.000000
2023-10-24 13:14:14,726 epoch 2 - iter 292/738 - loss 0.12551263 - time (sec): 27.00 - samples/sec: 2339.53 - lr: 0.000029 - momentum: 0.000000
2023-10-24 13:14:21,473 epoch 2 - iter 365/738 - loss 0.12297520 - time (sec): 33.75 - samples/sec: 2346.93 - lr: 0.000028 - momentum: 0.000000
2023-10-24 13:14:28,306 epoch 2 - iter 438/738 - loss 0.12082661 - time (sec): 40.58 - samples/sec: 2341.88 - lr: 0.000028 - momentum: 0.000000
2023-10-24 13:14:35,634 epoch 2 - iter 511/738 - loss 0.12078839 - time (sec): 47.91 - samples/sec: 2359.93 - lr: 0.000028 - momentum: 0.000000
2023-10-24 13:14:43,365 epoch 2 - iter 584/738 - loss 0.11688290 - time (sec): 55.64 - samples/sec: 2357.67 - lr: 0.000027 - momentum: 0.000000
2023-10-24 13:14:50,105 epoch 2 - iter 657/738 - loss 0.11634259 - time (sec): 62.38 - samples/sec: 2356.32 - lr: 0.000027 - momentum: 0.000000
2023-10-24 13:14:57,762 epoch 2 - iter 730/738 - loss 0.11522082 - time (sec): 70.04 - samples/sec: 2349.93 - lr: 0.000027 - momentum: 0.000000
2023-10-24 13:14:58,512 ----------------------------------------------------------------------------------------------------
2023-10-24 13:14:58,512 EPOCH 2 done: loss 0.1151 - lr: 0.000027
2023-10-24 13:15:07,005 DEV : loss 0.09679369628429413 - f1-score (micro avg)  0.7871
2023-10-24 13:15:07,026 saving best model
2023-10-24 13:15:07,769 ----------------------------------------------------------------------------------------------------
2023-10-24 13:15:13,874 epoch 3 - iter 73/738 - loss 0.06119096 - time (sec): 6.10 - samples/sec: 2527.55 - lr: 0.000026 - momentum: 0.000000
2023-10-24 13:15:21,101 epoch 3 - iter 146/738 - loss 0.06385970 - time (sec): 13.33 - samples/sec: 2408.60 - lr: 0.000026 - momentum: 0.000000
2023-10-24 13:15:28,695 epoch 3 - iter 219/738 - loss 0.06608306 - time (sec): 20.93 - samples/sec: 2350.06 - lr: 0.000026 - momentum: 0.000000
2023-10-24 13:15:36,070 epoch 3 - iter 292/738 - loss 0.06260299 - time (sec): 28.30 - samples/sec: 2348.85 - lr: 0.000025 - momentum: 0.000000
2023-10-24 13:15:43,242 epoch 3 - iter 365/738 - loss 0.06272309 - time (sec): 35.47 - samples/sec: 2337.28 - lr: 0.000025 - momentum: 0.000000
2023-10-24 13:15:50,403 epoch 3 - iter 438/738 - loss 0.06424382 - time (sec): 42.63 - samples/sec: 2337.43 - lr: 0.000025 - momentum: 0.000000
2023-10-24 13:15:57,263 epoch 3 - iter 511/738 - loss 0.06412265 - time (sec): 49.49 - samples/sec: 2339.66 - lr: 0.000024 - momentum: 0.000000
2023-10-24 13:16:03,619 epoch 3 - iter 584/738 - loss 0.06489306 - time (sec): 55.85 - samples/sec: 2349.80 - lr: 0.000024 - momentum: 0.000000
2023-10-24 13:16:10,250 epoch 3 - iter 657/738 - loss 0.06455833 - time (sec): 62.48 - samples/sec: 2347.50 - lr: 0.000024 - momentum: 0.000000
2023-10-24 13:16:17,422 epoch 3 - iter 730/738 - loss 0.06554966 - time (sec): 69.65 - samples/sec: 2355.53 - lr: 0.000023 - momentum: 0.000000
2023-10-24 13:16:18,577 ----------------------------------------------------------------------------------------------------
2023-10-24 13:16:18,577 EPOCH 3 done: loss 0.0656 - lr: 0.000023
2023-10-24 13:16:27,094 DEV : loss 0.1195509284734726 - f1-score (micro avg)  0.8074
2023-10-24 13:16:27,115 saving best model
2023-10-24 13:16:27,857 ----------------------------------------------------------------------------------------------------
2023-10-24 13:16:34,341 epoch 4 - iter 73/738 - loss 0.03826326 - time (sec): 6.48 - samples/sec: 2323.82 - lr: 0.000023 - momentum: 0.000000
2023-10-24 13:16:40,745 epoch 4 - iter 146/738 - loss 0.03920578 - time (sec): 12.89 - samples/sec: 2352.56 - lr: 0.000023 - momentum: 0.000000
2023-10-24 13:16:47,380 epoch 4 - iter 219/738 - loss 0.04269634 - time (sec): 19.52 - samples/sec: 2347.37 - lr: 0.000022 - momentum: 0.000000
2023-10-24 13:16:53,782 epoch 4 - iter 292/738 - loss 0.03941502 - time (sec): 25.92 - samples/sec: 2350.87 - lr: 0.000022 - momentum: 0.000000
2023-10-24 13:17:01,518 epoch 4 - iter 365/738 - loss 0.04336450 - time (sec): 33.66 - samples/sec: 2339.39 - lr: 0.000022 - momentum: 0.000000
2023-10-24 13:17:09,372 epoch 4 - iter 438/738 - loss 0.04463978 - time (sec): 41.51 - samples/sec: 2330.02 - lr: 0.000021 - momentum: 0.000000
2023-10-24 13:17:17,052 epoch 4 - iter 511/738 - loss 0.04335848 - time (sec): 49.19 - samples/sec: 2333.73 - lr: 0.000021 - momentum: 0.000000
2023-10-24 13:17:24,654 epoch 4 - iter 584/738 - loss 0.04416947 - time (sec): 56.80 - samples/sec: 2342.98 - lr: 0.000021 - momentum: 0.000000
2023-10-24 13:17:31,897 epoch 4 - iter 657/738 - loss 0.04422596 - time (sec): 64.04 - samples/sec: 2338.84 - lr: 0.000020 - momentum: 0.000000
2023-10-24 13:17:38,254 epoch 4 - iter 730/738 - loss 0.04340328 - time (sec): 70.40 - samples/sec: 2341.64 - lr: 0.000020 - momentum: 0.000000
2023-10-24 13:17:38,892 ----------------------------------------------------------------------------------------------------
2023-10-24 13:17:38,893 EPOCH 4 done: loss 0.0434 - lr: 0.000020
2023-10-24 13:17:47,395 DEV : loss 0.14306315779685974 - f1-score (micro avg)  0.8255
2023-10-24 13:17:47,416 saving best model
2023-10-24 13:17:48,112 ----------------------------------------------------------------------------------------------------
2023-10-24 13:17:54,842 epoch 5 - iter 73/738 - loss 0.03252486 - time (sec): 6.73 - samples/sec: 2414.59 - lr: 0.000020 - momentum: 0.000000
2023-10-24 13:18:02,107 epoch 5 - iter 146/738 - loss 0.02695551 - time (sec): 13.99 - samples/sec: 2423.52 - lr: 0.000019 - momentum: 0.000000
2023-10-24 13:18:09,085 epoch 5 - iter 219/738 - loss 0.02469070 - time (sec): 20.97 - samples/sec: 2355.55 - lr: 0.000019 - momentum: 0.000000
2023-10-24 13:18:15,961 epoch 5 - iter 292/738 - loss 0.02799215 - time (sec): 27.85 - samples/sec: 2360.35 - lr: 0.000019 - momentum: 0.000000
2023-10-24 13:18:23,556 epoch 5 - iter 365/738 - loss 0.03089862 - time (sec): 35.44 - samples/sec: 2369.17 - lr: 0.000018 - momentum: 0.000000
2023-10-24 13:18:30,272 epoch 5 - iter 438/738 - loss 0.02992995 - time (sec): 42.16 - samples/sec: 2370.04 - lr: 0.000018 - momentum: 0.000000
2023-10-24 13:18:36,758 epoch 5 - iter 511/738 - loss 0.03020870 - time (sec): 48.65 - samples/sec: 2361.43 - lr: 0.000018 - momentum: 0.000000
2023-10-24 13:18:44,656 epoch 5 - iter 584/738 - loss 0.02894484 - time (sec): 56.54 - samples/sec: 2341.48 - lr: 0.000017 - momentum: 0.000000
2023-10-24 13:18:51,234 epoch 5 - iter 657/738 - loss 0.02917966 - time (sec): 63.12 - samples/sec: 2354.37 - lr: 0.000017 - momentum: 0.000000
2023-10-24 13:18:58,515 epoch 5 - iter 730/738 - loss 0.02891546 - time (sec): 70.40 - samples/sec: 2342.45 - lr: 0.000017 - momentum: 0.000000
2023-10-24 13:18:59,256 ----------------------------------------------------------------------------------------------------
2023-10-24 13:18:59,256 EPOCH 5 done: loss 0.0290 - lr: 0.000017
2023-10-24 13:19:07,778 DEV : loss 0.17278100550174713 - f1-score (micro avg)  0.8353
2023-10-24 13:19:07,800 saving best model
2023-10-24 13:19:08,554 ----------------------------------------------------------------------------------------------------
2023-10-24 13:19:15,847 epoch 6 - iter 73/738 - loss 0.02161928 - time (sec): 7.29 - samples/sec: 2358.73 - lr: 0.000016 - momentum: 0.000000
2023-10-24 13:19:21,872 epoch 6 - iter 146/738 - loss 0.02705650 - time (sec): 13.32 - samples/sec: 2391.93 - lr: 0.000016 - momentum: 0.000000
2023-10-24 13:19:28,868 epoch 6 - iter 219/738 - loss 0.02310291 - time (sec): 20.31 - samples/sec: 2372.71 - lr: 0.000016 - momentum: 0.000000
2023-10-24 13:19:36,807 epoch 6 - iter 292/738 - loss 0.02454477 - time (sec): 28.25 - samples/sec: 2397.80 - lr: 0.000015 - momentum: 0.000000
2023-10-24 13:19:43,311 epoch 6 - iter 365/738 - loss 0.02313850 - time (sec): 34.76 - samples/sec: 2387.53 - lr: 0.000015 - momentum: 0.000000
2023-10-24 13:19:49,707 epoch 6 - iter 438/738 - loss 0.02240292 - time (sec): 41.15 - samples/sec: 2378.88 - lr: 0.000015 - momentum: 0.000000
2023-10-24 13:19:55,818 epoch 6 - iter 511/738 - loss 0.02311644 - time (sec): 47.26 - samples/sec: 2369.82 - lr: 0.000014 - momentum: 0.000000
2023-10-24 13:20:02,974 epoch 6 - iter 584/738 - loss 0.02322732 - time (sec): 54.42 - samples/sec: 2367.98 - lr: 0.000014 - momentum: 0.000000
2023-10-24 13:20:10,794 epoch 6 - iter 657/738 - loss 0.02288665 - time (sec): 62.24 - samples/sec: 2368.39 - lr: 0.000014 - momentum: 0.000000
2023-10-24 13:20:18,200 epoch 6 - iter 730/738 - loss 0.02245972 - time (sec): 69.65 - samples/sec: 2364.74 - lr: 0.000013 - momentum: 0.000000
2023-10-24 13:20:18,854 ----------------------------------------------------------------------------------------------------
2023-10-24 13:20:18,855 EPOCH 6 done: loss 0.0223 - lr: 0.000013
2023-10-24 13:20:27,379 DEV : loss 0.1752229779958725 - f1-score (micro avg)  0.8311
2023-10-24 13:20:27,400 ----------------------------------------------------------------------------------------------------
2023-10-24 13:20:34,992 epoch 7 - iter 73/738 - loss 0.01696402 - time (sec): 7.59 - samples/sec: 2506.55 - lr: 0.000013 - momentum: 0.000000
2023-10-24 13:20:42,483 epoch 7 - iter 146/738 - loss 0.01606754 - time (sec): 15.08 - samples/sec: 2405.65 - lr: 0.000013 - momentum: 0.000000
2023-10-24 13:20:49,251 epoch 7 - iter 219/738 - loss 0.01446198 - time (sec): 21.85 - samples/sec: 2366.51 - lr: 0.000012 - momentum: 0.000000
2023-10-24 13:20:56,316 epoch 7 - iter 292/738 - loss 0.01432059 - time (sec): 28.91 - samples/sec: 2354.26 - lr: 0.000012 - momentum: 0.000000
2023-10-24 13:21:02,785 epoch 7 - iter 365/738 - loss 0.01467452 - time (sec): 35.38 - samples/sec: 2363.45 - lr: 0.000012 - momentum: 0.000000
2023-10-24 13:21:09,515 epoch 7 - iter 438/738 - loss 0.01528636 - time (sec): 42.11 - samples/sec: 2356.64 - lr: 0.000011 - momentum: 0.000000
2023-10-24 13:21:16,247 epoch 7 - iter 511/738 - loss 0.01555352 - time (sec): 48.85 - samples/sec: 2347.07 - lr: 0.000011 - momentum: 0.000000
2023-10-24 13:21:22,550 epoch 7 - iter 584/738 - loss 0.01567911 - time (sec): 55.15 - samples/sec: 2345.54 - lr: 0.000011 - momentum: 0.000000
2023-10-24 13:21:30,682 epoch 7 - iter 657/738 - loss 0.01546853 - time (sec): 63.28 - samples/sec: 2347.97 - lr: 0.000010 - momentum: 0.000000
2023-10-24 13:21:37,808 epoch 7 - iter 730/738 - loss 0.01529696 - time (sec): 70.41 - samples/sec: 2337.42 - lr: 0.000010 - momentum: 0.000000
2023-10-24 13:21:38,478 ----------------------------------------------------------------------------------------------------
2023-10-24 13:21:38,478 EPOCH 7 done: loss 0.0154 - lr: 0.000010
2023-10-24 13:21:47,007 DEV : loss 0.18594373762607574 - f1-score (micro avg)  0.8365
2023-10-24 13:21:47,028 saving best model
2023-10-24 13:21:47,720 ----------------------------------------------------------------------------------------------------
2023-10-24 13:21:54,425 epoch 8 - iter 73/738 - loss 0.00750537 - time (sec): 6.70 - samples/sec: 2238.98 - lr: 0.000010 - momentum: 0.000000
2023-10-24 13:22:01,617 epoch 8 - iter 146/738 - loss 0.00788359 - time (sec): 13.90 - samples/sec: 2269.45 - lr: 0.000009 - momentum: 0.000000
2023-10-24 13:22:08,824 epoch 8 - iter 219/738 - loss 0.00934315 - time (sec): 21.10 - samples/sec: 2322.77 - lr: 0.000009 - momentum: 0.000000
2023-10-24 13:22:16,377 epoch 8 - iter 292/738 - loss 0.01466951 - time (sec): 28.66 - samples/sec: 2371.90 - lr: 0.000009 - momentum: 0.000000
2023-10-24 13:22:22,773 epoch 8 - iter 365/738 - loss 0.01332356 - time (sec): 35.05 - samples/sec: 2373.74 - lr: 0.000008 - momentum: 0.000000
2023-10-24 13:22:30,133 epoch 8 - iter 438/738 - loss 0.01270781 - time (sec): 42.41 - samples/sec: 2367.04 - lr: 0.000008 - momentum: 0.000000
2023-10-24 13:22:36,550 epoch 8 - iter 511/738 - loss 0.01165258 - time (sec): 48.83 - samples/sec: 2364.33 - lr: 0.000008 - momentum: 0.000000
2023-10-24 13:22:43,352 epoch 8 - iter 584/738 - loss 0.01144850 - time (sec): 55.63 - samples/sec: 2364.87 - lr: 0.000007 - momentum: 0.000000
2023-10-24 13:22:50,962 epoch 8 - iter 657/738 - loss 0.01115597 - time (sec): 63.24 - samples/sec: 2359.28 - lr: 0.000007 - momentum: 0.000000
2023-10-24 13:22:57,811 epoch 8 - iter 730/738 - loss 0.01096523 - time (sec): 70.09 - samples/sec: 2347.47 - lr: 0.000007 - momentum: 0.000000
2023-10-24 13:22:58,511 ----------------------------------------------------------------------------------------------------
2023-10-24 13:22:58,512 EPOCH 8 done: loss 0.0109 - lr: 0.000007
2023-10-24 13:23:07,041 DEV : loss 0.20139646530151367 - f1-score (micro avg)  0.8427
2023-10-24 13:23:07,063 saving best model
2023-10-24 13:23:07,765 ----------------------------------------------------------------------------------------------------
2023-10-24 13:23:14,724 epoch 9 - iter 73/738 - loss 0.00257277 - time (sec): 6.96 - samples/sec: 2324.26 - lr: 0.000006 - momentum: 0.000000
2023-10-24 13:23:23,010 epoch 9 - iter 146/738 - loss 0.00730412 - time (sec): 15.24 - samples/sec: 2403.85 - lr: 0.000006 - momentum: 0.000000
2023-10-24 13:23:29,423 epoch 9 - iter 219/738 - loss 0.00609698 - time (sec): 21.66 - samples/sec: 2410.15 - lr: 0.000006 - momentum: 0.000000
2023-10-24 13:23:35,741 epoch 9 - iter 292/738 - loss 0.00544285 - time (sec): 27.98 - samples/sec: 2421.83 - lr: 0.000005 - momentum: 0.000000
2023-10-24 13:23:42,329 epoch 9 - iter 365/738 - loss 0.00635157 - time (sec): 34.56 - samples/sec: 2393.52 - lr: 0.000005 - momentum: 0.000000
2023-10-24 13:23:49,427 epoch 9 - iter 438/738 - loss 0.00672352 - time (sec): 41.66 - samples/sec: 2379.81 - lr: 0.000005 - momentum: 0.000000
2023-10-24 13:23:56,025 epoch 9 - iter 511/738 - loss 0.00663039 - time (sec): 48.26 - samples/sec: 2380.14 - lr: 0.000004 - momentum: 0.000000
2023-10-24 13:24:03,205 epoch 9 - iter 584/738 - loss 0.00714230 - time (sec): 55.44 - samples/sec: 2372.22 - lr: 0.000004 - momentum: 0.000000
2023-10-24 13:24:10,544 epoch 9 - iter 657/738 - loss 0.00737085 - time (sec): 62.78 - samples/sec: 2369.24 - lr: 0.000004 - momentum: 0.000000
2023-10-24 13:24:17,784 epoch 9 - iter 730/738 - loss 0.00770982 - time (sec): 70.02 - samples/sec: 2355.80 - lr: 0.000003 - momentum: 0.000000
2023-10-24 13:24:18,512 ----------------------------------------------------------------------------------------------------
2023-10-24 13:24:18,513 EPOCH 9 done: loss 0.0077 - lr: 0.000003
2023-10-24 13:24:27,038 DEV : loss 0.21205534040927887 - f1-score (micro avg)  0.8366
2023-10-24 13:24:27,060 ----------------------------------------------------------------------------------------------------
2023-10-24 13:24:34,370 epoch 10 - iter 73/738 - loss 0.00087160 - time (sec): 7.31 - samples/sec: 2298.01 - lr: 0.000003 - momentum: 0.000000
2023-10-24 13:24:40,795 epoch 10 - iter 146/738 - loss 0.00199352 - time (sec): 13.73 - samples/sec: 2346.39 - lr: 0.000003 - momentum: 0.000000
2023-10-24 13:24:47,446 epoch 10 - iter 219/738 - loss 0.00286730 - time (sec): 20.39 - samples/sec: 2358.58 - lr: 0.000002 - momentum: 0.000000
2023-10-24 13:24:54,218 epoch 10 - iter 292/738 - loss 0.00350713 - time (sec): 27.16 - samples/sec: 2358.90 - lr: 0.000002 - momentum: 0.000000
2023-10-24 13:25:01,059 epoch 10 - iter 365/738 - loss 0.00344795 - time (sec): 34.00 - samples/sec: 2340.08 - lr: 0.000002 - momentum: 0.000000
2023-10-24 13:25:07,969 epoch 10 - iter 438/738 - loss 0.00386173 - time (sec): 40.91 - samples/sec: 2319.16 - lr: 0.000001 - momentum: 0.000000
2023-10-24 13:25:14,691 epoch 10 - iter 511/738 - loss 0.00390650 - time (sec): 47.63 - samples/sec: 2328.71 - lr: 0.000001 - momentum: 0.000000
2023-10-24 13:25:21,256 epoch 10 - iter 584/738 - loss 0.00497431 - time (sec): 54.20 - samples/sec: 2330.43 - lr: 0.000001 - momentum: 0.000000
2023-10-24 13:25:28,442 epoch 10 - iter 657/738 - loss 0.00532116 - time (sec): 61.38 - samples/sec: 2357.16 - lr: 0.000000 - momentum: 0.000000
2023-10-24 13:25:36,894 epoch 10 - iter 730/738 - loss 0.00617810 - time (sec): 69.83 - samples/sec: 2357.54 - lr: 0.000000 - momentum: 0.000000
2023-10-24 13:25:37,571 ----------------------------------------------------------------------------------------------------
2023-10-24 13:25:37,572 EPOCH 10 done: loss 0.0061 - lr: 0.000000
2023-10-24 13:25:46,103 DEV : loss 0.2109983116388321 - f1-score (micro avg)  0.8403
2023-10-24 13:25:46,684 ----------------------------------------------------------------------------------------------------
2023-10-24 13:25:46,685 Loading model from best epoch ...
2023-10-24 13:25:48,551 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod
2023-10-24 13:25:55,248 
Results:
- F-score (micro) 0.7894
- F-score (macro) 0.6916
- Accuracy 0.6747

By class:
              precision    recall  f1-score   support

         loc     0.8341    0.8846    0.8586       858
        pers     0.7371    0.7989    0.7668       537
         org     0.5547    0.5758    0.5651       132
        time     0.5077    0.6111    0.5546        54
        prod     0.7593    0.6721    0.7130        61

   micro avg     0.7654    0.8149    0.7894      1642
   macro avg     0.6786    0.7085    0.6916      1642
weighted avg     0.7664    0.8149    0.7896      1642

2023-10-24 13:25:55,249 ----------------------------------------------------------------------------------------------------