2023-10-17 20:46:43,325 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:46:43,326 Model: "SequenceTagger( (embeddings): TransformerWordEmbeddings( (model): ElectraModel( (embeddings): ElectraEmbeddings( (word_embeddings): Embedding(32001, 768) (position_embeddings): Embedding(512, 768) (token_type_embeddings): Embedding(2, 768) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): ElectraEncoder( (layer): ModuleList( (0-11): 12 x ElectraLayer( (attention): ElectraAttention( (self): ElectraSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): ElectraSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): ElectraIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): ElectraOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) ) ) (locked_dropout): LockedDropout(p=0.5) (linear): Linear(in_features=768, out_features=21, bias=True) (loss_function): CrossEntropyLoss() )" 2023-10-17 20:46:43,329 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:46:43,329 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences - NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator 2023-10-17 20:46:43,329 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:46:43,329 Train: 5901 sentences 2023-10-17 20:46:43,329 (train_with_dev=False, train_with_test=False) 2023-10-17 20:46:43,329 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:46:43,329 Training Params: 2023-10-17 20:46:43,329 - learning_rate: "5e-05" 2023-10-17 20:46:43,329 - mini_batch_size: "8" 2023-10-17 20:46:43,329 - max_epochs: "10" 2023-10-17 20:46:43,329 - shuffle: "True" 2023-10-17 20:46:43,329 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:46:43,329 Plugins: 2023-10-17 20:46:43,329 - TensorboardLogger 2023-10-17 20:46:43,329 - LinearScheduler | warmup_fraction: '0.1' 2023-10-17 20:46:43,329 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:46:43,329 Final evaluation on model from best epoch (best-model.pt) 2023-10-17 20:46:43,329 - metric: "('micro avg', 'f1-score')" 2023-10-17 20:46:43,329 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:46:43,329 Computation: 2023-10-17 20:46:43,329 - compute on device: cuda:0 2023-10-17 20:46:43,329 - embedding storage: none 2023-10-17 20:46:43,329 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:46:43,329 Model training base path: "hmbench-hipe2020/fr-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2" 2023-10-17 20:46:43,330 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:46:43,330 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:46:43,330 Logging anything other than scalars to TensorBoard is currently not supported. 2023-10-17 20:46:48,122 epoch 1 - iter 73/738 - loss 3.27628587 - time (sec): 4.79 - samples/sec: 3348.31 - lr: 0.000005 - momentum: 0.000000 2023-10-17 20:46:53,518 epoch 1 - iter 146/738 - loss 1.88031680 - time (sec): 10.19 - samples/sec: 3434.81 - lr: 0.000010 - momentum: 0.000000 2023-10-17 20:46:58,077 epoch 1 - iter 219/738 - loss 1.45313720 - time (sec): 14.75 - samples/sec: 3382.83 - lr: 0.000015 - momentum: 0.000000 2023-10-17 20:47:03,371 epoch 1 - iter 292/738 - loss 1.18325529 - time (sec): 20.04 - samples/sec: 3327.96 - lr: 0.000020 - momentum: 0.000000 2023-10-17 20:47:08,279 epoch 1 - iter 365/738 - loss 1.01353206 - time (sec): 24.95 - samples/sec: 3318.60 - lr: 0.000025 - momentum: 0.000000 2023-10-17 20:47:13,277 epoch 1 - iter 438/738 - loss 0.89228860 - time (sec): 29.95 - samples/sec: 3300.93 - lr: 0.000030 - momentum: 0.000000 2023-10-17 20:47:18,383 epoch 1 - iter 511/738 - loss 0.79797751 - time (sec): 35.05 - samples/sec: 3292.44 - lr: 0.000035 - momentum: 0.000000 2023-10-17 20:47:22,981 epoch 1 - iter 584/738 - loss 0.72397208 - time (sec): 39.65 - samples/sec: 3309.17 - lr: 0.000039 - momentum: 0.000000 2023-10-17 20:47:28,169 epoch 1 - iter 657/738 - loss 0.66245224 - time (sec): 44.84 - samples/sec: 3301.83 - lr: 0.000044 - momentum: 0.000000 2023-10-17 20:47:33,415 epoch 1 - iter 730/738 - loss 0.61711909 - time (sec): 50.08 - samples/sec: 3273.24 - lr: 0.000049 - momentum: 0.000000 2023-10-17 20:47:34,237 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:47:34,237 EPOCH 1 done: loss 0.6106 - lr: 0.000049 2023-10-17 20:47:41,563 DEV : loss 0.1268201768398285 - f1-score (micro avg) 0.7404 2023-10-17 20:47:41,593 saving best model 2023-10-17 20:47:41,993 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:47:46,689 epoch 2 - iter 73/738 - loss 0.12468557 - time (sec): 4.69 - samples/sec: 3176.81 - lr: 0.000049 - momentum: 0.000000 2023-10-17 20:47:52,431 epoch 2 - iter 146/738 - loss 0.14402353 - time (sec): 10.44 - samples/sec: 3172.64 - lr: 0.000049 - momentum: 0.000000 2023-10-17 20:47:57,788 epoch 2 - iter 219/738 - loss 0.14540226 - time (sec): 15.79 - samples/sec: 3176.56 - lr: 0.000048 - momentum: 0.000000 2023-10-17 20:48:03,569 epoch 2 - iter 292/738 - loss 0.13897723 - time (sec): 21.57 - samples/sec: 3163.61 - lr: 0.000048 - momentum: 0.000000 2023-10-17 20:48:09,446 epoch 2 - iter 365/738 - loss 0.13575281 - time (sec): 27.45 - samples/sec: 3135.71 - lr: 0.000047 - momentum: 0.000000 2023-10-17 20:48:14,813 epoch 2 - iter 438/738 - loss 0.13129263 - time (sec): 32.82 - samples/sec: 3119.78 - lr: 0.000047 - momentum: 0.000000 2023-10-17 20:48:20,077 epoch 2 - iter 511/738 - loss 0.12744292 - time (sec): 38.08 - samples/sec: 3088.08 - lr: 0.000046 - momentum: 0.000000 2023-10-17 20:48:25,072 epoch 2 - iter 584/738 - loss 0.12567829 - time (sec): 43.08 - samples/sec: 3080.94 - lr: 0.000046 - momentum: 0.000000 2023-10-17 20:48:30,070 epoch 2 - iter 657/738 - loss 0.12273838 - time (sec): 48.08 - samples/sec: 3087.93 - lr: 0.000045 - momentum: 0.000000 2023-10-17 20:48:35,401 epoch 2 - iter 730/738 - loss 0.12256728 - time (sec): 53.41 - samples/sec: 3088.76 - lr: 0.000045 - momentum: 0.000000 2023-10-17 20:48:35,899 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:48:35,899 EPOCH 2 done: loss 0.1224 - lr: 0.000045 2023-10-17 20:48:47,359 DEV : loss 0.1086253672838211 - f1-score (micro avg) 0.7764 2023-10-17 20:48:47,392 saving best model 2023-10-17 20:48:47,962 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:48:52,731 epoch 3 - iter 73/738 - loss 0.07098121 - time (sec): 4.77 - samples/sec: 3112.70 - lr: 0.000044 - momentum: 0.000000 2023-10-17 20:48:57,645 epoch 3 - iter 146/738 - loss 0.07973832 - time (sec): 9.68 - samples/sec: 3156.26 - lr: 0.000043 - momentum: 0.000000 2023-10-17 20:49:02,953 epoch 3 - iter 219/738 - loss 0.07961799 - time (sec): 14.99 - samples/sec: 3169.33 - lr: 0.000043 - momentum: 0.000000 2023-10-17 20:49:07,745 epoch 3 - iter 292/738 - loss 0.07850589 - time (sec): 19.78 - samples/sec: 3236.22 - lr: 0.000042 - momentum: 0.000000 2023-10-17 20:49:12,567 epoch 3 - iter 365/738 - loss 0.07402743 - time (sec): 24.60 - samples/sec: 3265.52 - lr: 0.000042 - momentum: 0.000000 2023-10-17 20:49:17,298 epoch 3 - iter 438/738 - loss 0.08001352 - time (sec): 29.33 - samples/sec: 3275.71 - lr: 0.000041 - momentum: 0.000000 2023-10-17 20:49:23,094 epoch 3 - iter 511/738 - loss 0.07748337 - time (sec): 35.13 - samples/sec: 3272.26 - lr: 0.000041 - momentum: 0.000000 2023-10-17 20:49:28,090 epoch 3 - iter 584/738 - loss 0.07564249 - time (sec): 40.12 - samples/sec: 3282.58 - lr: 0.000040 - momentum: 0.000000 2023-10-17 20:49:33,175 epoch 3 - iter 657/738 - loss 0.07343420 - time (sec): 45.21 - samples/sec: 3285.72 - lr: 0.000040 - momentum: 0.000000 2023-10-17 20:49:38,072 epoch 3 - iter 730/738 - loss 0.07366471 - time (sec): 50.11 - samples/sec: 3286.92 - lr: 0.000039 - momentum: 0.000000 2023-10-17 20:49:38,600 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:49:38,601 EPOCH 3 done: loss 0.0739 - lr: 0.000039 2023-10-17 20:49:49,997 DEV : loss 0.11555362492799759 - f1-score (micro avg) 0.8198 2023-10-17 20:49:50,031 saving best model 2023-10-17 20:49:50,487 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:49:55,834 epoch 4 - iter 73/738 - loss 0.04160062 - time (sec): 5.34 - samples/sec: 3175.79 - lr: 0.000038 - momentum: 0.000000 2023-10-17 20:50:01,239 epoch 4 - iter 146/738 - loss 0.04439446 - time (sec): 10.74 - samples/sec: 3270.24 - lr: 0.000038 - momentum: 0.000000 2023-10-17 20:50:06,206 epoch 4 - iter 219/738 - loss 0.04370494 - time (sec): 15.71 - samples/sec: 3268.86 - lr: 0.000037 - momentum: 0.000000 2023-10-17 20:50:11,401 epoch 4 - iter 292/738 - loss 0.04811555 - time (sec): 20.90 - samples/sec: 3253.28 - lr: 0.000037 - momentum: 0.000000 2023-10-17 20:50:16,097 epoch 4 - iter 365/738 - loss 0.04926683 - time (sec): 25.60 - samples/sec: 3256.26 - lr: 0.000036 - momentum: 0.000000 2023-10-17 20:50:20,727 epoch 4 - iter 438/738 - loss 0.04889972 - time (sec): 30.23 - samples/sec: 3275.71 - lr: 0.000036 - momentum: 0.000000 2023-10-17 20:50:25,568 epoch 4 - iter 511/738 - loss 0.04922740 - time (sec): 35.07 - samples/sec: 3286.15 - lr: 0.000035 - momentum: 0.000000 2023-10-17 20:50:30,582 epoch 4 - iter 584/738 - loss 0.04769097 - time (sec): 40.09 - samples/sec: 3295.61 - lr: 0.000035 - momentum: 0.000000 2023-10-17 20:50:35,683 epoch 4 - iter 657/738 - loss 0.04770829 - time (sec): 45.19 - samples/sec: 3308.46 - lr: 0.000034 - momentum: 0.000000 2023-10-17 20:50:40,337 epoch 4 - iter 730/738 - loss 0.04843947 - time (sec): 49.84 - samples/sec: 3304.22 - lr: 0.000033 - momentum: 0.000000 2023-10-17 20:50:40,884 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:50:40,885 EPOCH 4 done: loss 0.0485 - lr: 0.000033 2023-10-17 20:50:52,292 DEV : loss 0.1695607602596283 - f1-score (micro avg) 0.8296 2023-10-17 20:50:52,322 saving best model 2023-10-17 20:50:52,822 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:50:58,011 epoch 5 - iter 73/738 - loss 0.03608107 - time (sec): 5.19 - samples/sec: 3363.48 - lr: 0.000033 - momentum: 0.000000 2023-10-17 20:51:02,971 epoch 5 - iter 146/738 - loss 0.03199147 - time (sec): 10.15 - samples/sec: 3357.55 - lr: 0.000032 - momentum: 0.000000 2023-10-17 20:51:08,337 epoch 5 - iter 219/738 - loss 0.03313355 - time (sec): 15.51 - samples/sec: 3354.59 - lr: 0.000032 - momentum: 0.000000 2023-10-17 20:51:13,302 epoch 5 - iter 292/738 - loss 0.03443954 - time (sec): 20.48 - samples/sec: 3348.04 - lr: 0.000031 - momentum: 0.000000 2023-10-17 20:51:18,206 epoch 5 - iter 365/738 - loss 0.03367944 - time (sec): 25.38 - samples/sec: 3362.98 - lr: 0.000031 - momentum: 0.000000 2023-10-17 20:51:23,370 epoch 5 - iter 438/738 - loss 0.03267726 - time (sec): 30.55 - samples/sec: 3345.35 - lr: 0.000030 - momentum: 0.000000 2023-10-17 20:51:27,818 epoch 5 - iter 511/738 - loss 0.03446430 - time (sec): 34.99 - samples/sec: 3341.96 - lr: 0.000030 - momentum: 0.000000 2023-10-17 20:51:32,447 epoch 5 - iter 584/738 - loss 0.03493802 - time (sec): 39.62 - samples/sec: 3334.16 - lr: 0.000029 - momentum: 0.000000 2023-10-17 20:51:37,619 epoch 5 - iter 657/738 - loss 0.03468427 - time (sec): 44.80 - samples/sec: 3305.72 - lr: 0.000028 - momentum: 0.000000 2023-10-17 20:51:42,797 epoch 5 - iter 730/738 - loss 0.03596301 - time (sec): 49.97 - samples/sec: 3302.27 - lr: 0.000028 - momentum: 0.000000 2023-10-17 20:51:43,259 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:51:43,259 EPOCH 5 done: loss 0.0361 - lr: 0.000028 2023-10-17 20:51:54,959 DEV : loss 0.18621283769607544 - f1-score (micro avg) 0.8343 2023-10-17 20:51:54,989 saving best model 2023-10-17 20:51:55,450 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:52:00,421 epoch 6 - iter 73/738 - loss 0.03314020 - time (sec): 4.97 - samples/sec: 3267.43 - lr: 0.000027 - momentum: 0.000000 2023-10-17 20:52:05,581 epoch 6 - iter 146/738 - loss 0.03144585 - time (sec): 10.13 - samples/sec: 3177.13 - lr: 0.000027 - momentum: 0.000000 2023-10-17 20:52:10,154 epoch 6 - iter 219/738 - loss 0.02846193 - time (sec): 14.70 - samples/sec: 3204.07 - lr: 0.000026 - momentum: 0.000000 2023-10-17 20:52:15,181 epoch 6 - iter 292/738 - loss 0.02617097 - time (sec): 19.73 - samples/sec: 3233.54 - lr: 0.000026 - momentum: 0.000000 2023-10-17 20:52:20,401 epoch 6 - iter 365/738 - loss 0.02459012 - time (sec): 24.95 - samples/sec: 3217.27 - lr: 0.000025 - momentum: 0.000000 2023-10-17 20:52:24,933 epoch 6 - iter 438/738 - loss 0.02420569 - time (sec): 29.48 - samples/sec: 3251.94 - lr: 0.000025 - momentum: 0.000000 2023-10-17 20:52:29,485 epoch 6 - iter 511/738 - loss 0.02455905 - time (sec): 34.03 - samples/sec: 3278.27 - lr: 0.000024 - momentum: 0.000000 2023-10-17 20:52:34,344 epoch 6 - iter 584/738 - loss 0.02479615 - time (sec): 38.89 - samples/sec: 3268.69 - lr: 0.000023 - momentum: 0.000000 2023-10-17 20:52:40,085 epoch 6 - iter 657/738 - loss 0.02602451 - time (sec): 44.63 - samples/sec: 3301.26 - lr: 0.000023 - momentum: 0.000000 2023-10-17 20:52:45,132 epoch 6 - iter 730/738 - loss 0.02514643 - time (sec): 49.68 - samples/sec: 3302.41 - lr: 0.000022 - momentum: 0.000000 2023-10-17 20:52:45,851 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:52:45,852 EPOCH 6 done: loss 0.0252 - lr: 0.000022 2023-10-17 20:52:57,524 DEV : loss 0.19898028671741486 - f1-score (micro avg) 0.8438 2023-10-17 20:52:57,557 saving best model 2023-10-17 20:52:58,043 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:53:02,903 epoch 7 - iter 73/738 - loss 0.01475665 - time (sec): 4.86 - samples/sec: 3133.95 - lr: 0.000022 - momentum: 0.000000 2023-10-17 20:53:07,464 epoch 7 - iter 146/738 - loss 0.01079426 - time (sec): 9.42 - samples/sec: 3313.04 - lr: 0.000021 - momentum: 0.000000 2023-10-17 20:53:12,052 epoch 7 - iter 219/738 - loss 0.01197725 - time (sec): 14.01 - samples/sec: 3264.54 - lr: 0.000021 - momentum: 0.000000 2023-10-17 20:53:16,929 epoch 7 - iter 292/738 - loss 0.01292926 - time (sec): 18.88 - samples/sec: 3284.79 - lr: 0.000020 - momentum: 0.000000 2023-10-17 20:53:21,733 epoch 7 - iter 365/738 - loss 0.01589341 - time (sec): 23.69 - samples/sec: 3296.02 - lr: 0.000020 - momentum: 0.000000 2023-10-17 20:53:26,782 epoch 7 - iter 438/738 - loss 0.01627966 - time (sec): 28.74 - samples/sec: 3340.14 - lr: 0.000019 - momentum: 0.000000 2023-10-17 20:53:32,829 epoch 7 - iter 511/738 - loss 0.01882907 - time (sec): 34.79 - samples/sec: 3352.44 - lr: 0.000018 - momentum: 0.000000 2023-10-17 20:53:37,503 epoch 7 - iter 584/738 - loss 0.01875664 - time (sec): 39.46 - samples/sec: 3353.64 - lr: 0.000018 - momentum: 0.000000 2023-10-17 20:53:42,403 epoch 7 - iter 657/738 - loss 0.01898628 - time (sec): 44.36 - samples/sec: 3350.33 - lr: 0.000017 - momentum: 0.000000 2023-10-17 20:53:47,332 epoch 7 - iter 730/738 - loss 0.01903040 - time (sec): 49.29 - samples/sec: 3341.12 - lr: 0.000017 - momentum: 0.000000 2023-10-17 20:53:47,894 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:53:47,894 EPOCH 7 done: loss 0.0194 - lr: 0.000017 2023-10-17 20:53:59,398 DEV : loss 0.2004670649766922 - f1-score (micro avg) 0.8497 2023-10-17 20:53:59,432 saving best model 2023-10-17 20:53:59,916 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:54:04,698 epoch 8 - iter 73/738 - loss 0.01638856 - time (sec): 4.78 - samples/sec: 3252.98 - lr: 0.000016 - momentum: 0.000000 2023-10-17 20:54:09,704 epoch 8 - iter 146/738 - loss 0.01268644 - time (sec): 9.79 - samples/sec: 3215.86 - lr: 0.000016 - momentum: 0.000000 2023-10-17 20:54:14,523 epoch 8 - iter 219/738 - loss 0.01154489 - time (sec): 14.61 - samples/sec: 3238.88 - lr: 0.000015 - momentum: 0.000000 2023-10-17 20:54:19,163 epoch 8 - iter 292/738 - loss 0.01121476 - time (sec): 19.25 - samples/sec: 3253.95 - lr: 0.000015 - momentum: 0.000000 2023-10-17 20:54:25,326 epoch 8 - iter 365/738 - loss 0.01237795 - time (sec): 25.41 - samples/sec: 3256.44 - lr: 0.000014 - momentum: 0.000000 2023-10-17 20:54:31,141 epoch 8 - iter 438/738 - loss 0.01216074 - time (sec): 31.22 - samples/sec: 3254.28 - lr: 0.000013 - momentum: 0.000000 2023-10-17 20:54:36,019 epoch 8 - iter 511/738 - loss 0.01129103 - time (sec): 36.10 - samples/sec: 3253.41 - lr: 0.000013 - momentum: 0.000000 2023-10-17 20:54:41,054 epoch 8 - iter 584/738 - loss 0.01142640 - time (sec): 41.14 - samples/sec: 3261.75 - lr: 0.000012 - momentum: 0.000000 2023-10-17 20:54:45,906 epoch 8 - iter 657/738 - loss 0.01201789 - time (sec): 45.99 - samples/sec: 3247.76 - lr: 0.000012 - momentum: 0.000000 2023-10-17 20:54:50,232 epoch 8 - iter 730/738 - loss 0.01177942 - time (sec): 50.31 - samples/sec: 3270.00 - lr: 0.000011 - momentum: 0.000000 2023-10-17 20:54:50,766 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:54:50,767 EPOCH 8 done: loss 0.0118 - lr: 0.000011 2023-10-17 20:55:02,150 DEV : loss 0.198430597782135 - f1-score (micro avg) 0.8567 2023-10-17 20:55:02,181 saving best model 2023-10-17 20:55:02,675 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:55:07,868 epoch 9 - iter 73/738 - loss 0.01519568 - time (sec): 5.19 - samples/sec: 3455.39 - lr: 0.000011 - momentum: 0.000000 2023-10-17 20:55:12,960 epoch 9 - iter 146/738 - loss 0.00937816 - time (sec): 10.28 - samples/sec: 3348.66 - lr: 0.000010 - momentum: 0.000000 2023-10-17 20:55:17,958 epoch 9 - iter 219/738 - loss 0.00848427 - time (sec): 15.28 - samples/sec: 3265.03 - lr: 0.000010 - momentum: 0.000000 2023-10-17 20:55:23,209 epoch 9 - iter 292/738 - loss 0.00799314 - time (sec): 20.53 - samples/sec: 3258.21 - lr: 0.000009 - momentum: 0.000000 2023-10-17 20:55:27,918 epoch 9 - iter 365/738 - loss 0.00807520 - time (sec): 25.24 - samples/sec: 3272.15 - lr: 0.000008 - momentum: 0.000000 2023-10-17 20:55:33,094 epoch 9 - iter 438/738 - loss 0.00784412 - time (sec): 30.42 - samples/sec: 3286.92 - lr: 0.000008 - momentum: 0.000000 2023-10-17 20:55:38,313 epoch 9 - iter 511/738 - loss 0.00889544 - time (sec): 35.64 - samples/sec: 3274.78 - lr: 0.000007 - momentum: 0.000000 2023-10-17 20:55:43,202 epoch 9 - iter 584/738 - loss 0.00926012 - time (sec): 40.52 - samples/sec: 3281.89 - lr: 0.000007 - momentum: 0.000000 2023-10-17 20:55:48,350 epoch 9 - iter 657/738 - loss 0.00863704 - time (sec): 45.67 - samples/sec: 3283.07 - lr: 0.000006 - momentum: 0.000000 2023-10-17 20:55:52,805 epoch 9 - iter 730/738 - loss 0.00798481 - time (sec): 50.13 - samples/sec: 3290.70 - lr: 0.000006 - momentum: 0.000000 2023-10-17 20:55:53,313 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:55:53,313 EPOCH 9 done: loss 0.0079 - lr: 0.000006 2023-10-17 20:56:04,772 DEV : loss 0.2114827036857605 - f1-score (micro avg) 0.8592 2023-10-17 20:56:04,806 saving best model 2023-10-17 20:56:05,225 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:56:10,423 epoch 10 - iter 73/738 - loss 0.00697079 - time (sec): 5.20 - samples/sec: 3137.08 - lr: 0.000005 - momentum: 0.000000 2023-10-17 20:56:16,026 epoch 10 - iter 146/738 - loss 0.00806024 - time (sec): 10.80 - samples/sec: 3238.10 - lr: 0.000004 - momentum: 0.000000 2023-10-17 20:56:20,994 epoch 10 - iter 219/738 - loss 0.00854713 - time (sec): 15.77 - samples/sec: 3195.31 - lr: 0.000004 - momentum: 0.000000 2023-10-17 20:56:26,151 epoch 10 - iter 292/738 - loss 0.00725008 - time (sec): 20.92 - samples/sec: 3224.88 - lr: 0.000003 - momentum: 0.000000 2023-10-17 20:56:30,811 epoch 10 - iter 365/738 - loss 0.00633495 - time (sec): 25.58 - samples/sec: 3248.59 - lr: 0.000003 - momentum: 0.000000 2023-10-17 20:56:35,376 epoch 10 - iter 438/738 - loss 0.00772199 - time (sec): 30.15 - samples/sec: 3274.22 - lr: 0.000002 - momentum: 0.000000 2023-10-17 20:56:40,499 epoch 10 - iter 511/738 - loss 0.00693419 - time (sec): 35.27 - samples/sec: 3250.26 - lr: 0.000002 - momentum: 0.000000 2023-10-17 20:56:45,335 epoch 10 - iter 584/738 - loss 0.00661804 - time (sec): 40.11 - samples/sec: 3269.64 - lr: 0.000001 - momentum: 0.000000 2023-10-17 20:56:50,238 epoch 10 - iter 657/738 - loss 0.00621935 - time (sec): 45.01 - samples/sec: 3277.65 - lr: 0.000001 - momentum: 0.000000 2023-10-17 20:56:55,354 epoch 10 - iter 730/738 - loss 0.00579273 - time (sec): 50.13 - samples/sec: 3289.07 - lr: 0.000000 - momentum: 0.000000 2023-10-17 20:56:55,849 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:56:55,849 EPOCH 10 done: loss 0.0057 - lr: 0.000000 2023-10-17 20:57:07,458 DEV : loss 0.2092556357383728 - f1-score (micro avg) 0.8575 2023-10-17 20:57:07,845 ---------------------------------------------------------------------------------------------------- 2023-10-17 20:57:07,846 Loading model from best epoch ... 2023-10-17 20:57:09,560 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod 2023-10-17 20:57:15,748 Results: - F-score (micro) 0.8061 - F-score (macro) 0.7226 - Accuracy 0.6955 By class: precision recall f1-score support loc 0.8573 0.8753 0.8662 858 pers 0.7504 0.8175 0.7825 537 org 0.6579 0.5682 0.6098 132 time 0.5806 0.6667 0.6207 54 prod 0.8333 0.6557 0.7339 61 micro avg 0.7958 0.8167 0.8061 1642 macro avg 0.7359 0.7167 0.7226 1642 weighted avg 0.7963 0.8167 0.8052 1642 2023-10-17 20:57:15,748 ----------------------------------------------------------------------------------------------------