Upload ./training.log with huggingface_hub
Browse files- training.log +505 -0
training.log
ADDED
@@ -0,0 +1,505 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-24 19:20:16,509 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-24 19:20:16,510 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): BertLayer(
|
39 |
+
(attention): BertAttention(
|
40 |
+
(self): BertSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): BertSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): BertIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): BertOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): BertLayer(
|
63 |
+
(attention): BertAttention(
|
64 |
+
(self): BertSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): BertSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): BertIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): BertOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): BertLayer(
|
87 |
+
(attention): BertAttention(
|
88 |
+
(self): BertSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): BertSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): BertIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): BertOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): BertLayer(
|
111 |
+
(attention): BertAttention(
|
112 |
+
(self): BertSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): BertSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): BertIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): BertOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): BertLayer(
|
135 |
+
(attention): BertAttention(
|
136 |
+
(self): BertSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): BertSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): BertIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): BertOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): BertLayer(
|
159 |
+
(attention): BertAttention(
|
160 |
+
(self): BertSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): BertSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): BertIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): BertOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): BertLayer(
|
183 |
+
(attention): BertAttention(
|
184 |
+
(self): BertSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): BertSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): BertIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): BertOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): BertLayer(
|
207 |
+
(attention): BertAttention(
|
208 |
+
(self): BertSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): BertSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): BertIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): BertOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): BertLayer(
|
231 |
+
(attention): BertAttention(
|
232 |
+
(self): BertSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): BertSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): BertIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): BertOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): BertLayer(
|
255 |
+
(attention): BertAttention(
|
256 |
+
(self): BertSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): BertSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): BertIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): BertOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): BertLayer(
|
279 |
+
(attention): BertAttention(
|
280 |
+
(self): BertSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): BertSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): BertIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): BertOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(pooler): BertPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
307 |
+
)
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(locked_dropout): LockedDropout(p=0.5)
|
311 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
312 |
+
(loss_function): CrossEntropyLoss()
|
313 |
+
)"
|
314 |
+
2023-10-24 19:20:16,511 ----------------------------------------------------------------------------------------------------
|
315 |
+
2023-10-24 19:20:16,511 MultiCorpus: 7936 train + 992 dev + 992 test sentences
|
316 |
+
- NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /home/ubuntu/.flair/datasets/ner_icdar_europeana/fr
|
317 |
+
2023-10-24 19:20:16,512 ----------------------------------------------------------------------------------------------------
|
318 |
+
2023-10-24 19:20:16,512 Train: 7936 sentences
|
319 |
+
2023-10-24 19:20:16,512 (train_with_dev=False, train_with_test=False)
|
320 |
+
2023-10-24 19:20:16,512 ----------------------------------------------------------------------------------------------------
|
321 |
+
2023-10-24 19:20:16,512 Training Params:
|
322 |
+
2023-10-24 19:20:16,512 - learning_rate: "3e-05"
|
323 |
+
2023-10-24 19:20:16,512 - mini_batch_size: "4"
|
324 |
+
2023-10-24 19:20:16,512 - max_epochs: "10"
|
325 |
+
2023-10-24 19:20:16,512 - shuffle: "True"
|
326 |
+
2023-10-24 19:20:16,512 ----------------------------------------------------------------------------------------------------
|
327 |
+
2023-10-24 19:20:16,512 Plugins:
|
328 |
+
2023-10-24 19:20:16,512 - TensorboardLogger
|
329 |
+
2023-10-24 19:20:16,512 - LinearScheduler | warmup_fraction: '0.1'
|
330 |
+
2023-10-24 19:20:16,512 ----------------------------------------------------------------------------------------------------
|
331 |
+
2023-10-24 19:20:16,512 Final evaluation on model from best epoch (best-model.pt)
|
332 |
+
2023-10-24 19:20:16,512 - metric: "('micro avg', 'f1-score')"
|
333 |
+
2023-10-24 19:20:16,512 ----------------------------------------------------------------------------------------------------
|
334 |
+
2023-10-24 19:20:16,512 Computation:
|
335 |
+
2023-10-24 19:20:16,512 - compute on device: cuda:0
|
336 |
+
2023-10-24 19:20:16,512 - embedding storage: none
|
337 |
+
2023-10-24 19:20:16,512 ----------------------------------------------------------------------------------------------------
|
338 |
+
2023-10-24 19:20:16,512 Model training base path: "hmbench-icdar/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5"
|
339 |
+
2023-10-24 19:20:16,512 ----------------------------------------------------------------------------------------------------
|
340 |
+
2023-10-24 19:20:16,513 ----------------------------------------------------------------------------------------------------
|
341 |
+
2023-10-24 19:20:16,513 Logging anything other than scalars to TensorBoard is currently not supported.
|
342 |
+
2023-10-24 19:20:28,549 epoch 1 - iter 198/1984 - loss 1.32014092 - time (sec): 12.04 - samples/sec: 1372.54 - lr: 0.000003 - momentum: 0.000000
|
343 |
+
2023-10-24 19:20:40,509 epoch 1 - iter 396/1984 - loss 0.82590169 - time (sec): 24.00 - samples/sec: 1347.40 - lr: 0.000006 - momentum: 0.000000
|
344 |
+
2023-10-24 19:20:52,633 epoch 1 - iter 594/1984 - loss 0.62234473 - time (sec): 36.12 - samples/sec: 1359.25 - lr: 0.000009 - momentum: 0.000000
|
345 |
+
2023-10-24 19:21:04,703 epoch 1 - iter 792/1984 - loss 0.51779669 - time (sec): 48.19 - samples/sec: 1349.30 - lr: 0.000012 - momentum: 0.000000
|
346 |
+
2023-10-24 19:21:16,796 epoch 1 - iter 990/1984 - loss 0.44752052 - time (sec): 60.28 - samples/sec: 1352.27 - lr: 0.000015 - momentum: 0.000000
|
347 |
+
2023-10-24 19:21:28,869 epoch 1 - iter 1188/1984 - loss 0.39941383 - time (sec): 72.36 - samples/sec: 1352.98 - lr: 0.000018 - momentum: 0.000000
|
348 |
+
2023-10-24 19:21:40,973 epoch 1 - iter 1386/1984 - loss 0.36252978 - time (sec): 84.46 - samples/sec: 1355.89 - lr: 0.000021 - momentum: 0.000000
|
349 |
+
2023-10-24 19:21:53,022 epoch 1 - iter 1584/1984 - loss 0.33296148 - time (sec): 96.51 - samples/sec: 1351.32 - lr: 0.000024 - momentum: 0.000000
|
350 |
+
2023-10-24 19:22:05,124 epoch 1 - iter 1782/1984 - loss 0.31002868 - time (sec): 108.61 - samples/sec: 1353.86 - lr: 0.000027 - momentum: 0.000000
|
351 |
+
2023-10-24 19:22:17,309 epoch 1 - iter 1980/1984 - loss 0.29254745 - time (sec): 120.80 - samples/sec: 1355.42 - lr: 0.000030 - momentum: 0.000000
|
352 |
+
2023-10-24 19:22:17,540 ----------------------------------------------------------------------------------------------------
|
353 |
+
2023-10-24 19:22:17,540 EPOCH 1 done: loss 0.2922 - lr: 0.000030
|
354 |
+
2023-10-24 19:22:20,599 DEV : loss 0.11393631994724274 - f1-score (micro avg) 0.7142
|
355 |
+
2023-10-24 19:22:20,614 saving best model
|
356 |
+
2023-10-24 19:22:21,081 ----------------------------------------------------------------------------------------------------
|
357 |
+
2023-10-24 19:22:33,239 epoch 2 - iter 198/1984 - loss 0.11109567 - time (sec): 12.16 - samples/sec: 1354.61 - lr: 0.000030 - momentum: 0.000000
|
358 |
+
2023-10-24 19:22:45,371 epoch 2 - iter 396/1984 - loss 0.11188014 - time (sec): 24.29 - samples/sec: 1357.95 - lr: 0.000029 - momentum: 0.000000
|
359 |
+
2023-10-24 19:22:57,459 epoch 2 - iter 594/1984 - loss 0.12088148 - time (sec): 36.38 - samples/sec: 1369.44 - lr: 0.000029 - momentum: 0.000000
|
360 |
+
2023-10-24 19:23:09,475 epoch 2 - iter 792/1984 - loss 0.12005888 - time (sec): 48.39 - samples/sec: 1355.48 - lr: 0.000029 - momentum: 0.000000
|
361 |
+
2023-10-24 19:23:21,419 epoch 2 - iter 990/1984 - loss 0.11907747 - time (sec): 60.34 - samples/sec: 1344.35 - lr: 0.000028 - momentum: 0.000000
|
362 |
+
2023-10-24 19:23:33,494 epoch 2 - iter 1188/1984 - loss 0.11881279 - time (sec): 72.41 - samples/sec: 1342.66 - lr: 0.000028 - momentum: 0.000000
|
363 |
+
2023-10-24 19:23:45,448 epoch 2 - iter 1386/1984 - loss 0.11809499 - time (sec): 84.37 - samples/sec: 1344.77 - lr: 0.000028 - momentum: 0.000000
|
364 |
+
2023-10-24 19:23:57,836 epoch 2 - iter 1584/1984 - loss 0.11496911 - time (sec): 96.75 - samples/sec: 1350.51 - lr: 0.000027 - momentum: 0.000000
|
365 |
+
2023-10-24 19:24:10,044 epoch 2 - iter 1782/1984 - loss 0.11353484 - time (sec): 108.96 - samples/sec: 1347.87 - lr: 0.000027 - momentum: 0.000000
|
366 |
+
2023-10-24 19:24:22,155 epoch 2 - iter 1980/1984 - loss 0.11233027 - time (sec): 121.07 - samples/sec: 1353.14 - lr: 0.000027 - momentum: 0.000000
|
367 |
+
2023-10-24 19:24:22,383 ----------------------------------------------------------------------------------------------------
|
368 |
+
2023-10-24 19:24:22,383 EPOCH 2 done: loss 0.1126 - lr: 0.000027
|
369 |
+
2023-10-24 19:24:25,798 DEV : loss 0.11593124270439148 - f1-score (micro avg) 0.7271
|
370 |
+
2023-10-24 19:24:25,813 saving best model
|
371 |
+
2023-10-24 19:24:26,407 ----------------------------------------------------------------------------------------------------
|
372 |
+
2023-10-24 19:24:38,620 epoch 3 - iter 198/1984 - loss 0.08265116 - time (sec): 12.21 - samples/sec: 1416.54 - lr: 0.000026 - momentum: 0.000000
|
373 |
+
2023-10-24 19:24:50,809 epoch 3 - iter 396/1984 - loss 0.07804517 - time (sec): 24.40 - samples/sec: 1401.12 - lr: 0.000026 - momentum: 0.000000
|
374 |
+
2023-10-24 19:25:03,281 epoch 3 - iter 594/1984 - loss 0.08404645 - time (sec): 36.87 - samples/sec: 1385.28 - lr: 0.000026 - momentum: 0.000000
|
375 |
+
2023-10-24 19:25:15,312 epoch 3 - iter 792/1984 - loss 0.08231776 - time (sec): 48.90 - samples/sec: 1359.00 - lr: 0.000025 - momentum: 0.000000
|
376 |
+
2023-10-24 19:25:27,283 epoch 3 - iter 990/1984 - loss 0.08429583 - time (sec): 60.87 - samples/sec: 1354.01 - lr: 0.000025 - momentum: 0.000000
|
377 |
+
2023-10-24 19:25:39,410 epoch 3 - iter 1188/1984 - loss 0.08375321 - time (sec): 73.00 - samples/sec: 1341.90 - lr: 0.000025 - momentum: 0.000000
|
378 |
+
2023-10-24 19:25:51,397 epoch 3 - iter 1386/1984 - loss 0.08571122 - time (sec): 84.99 - samples/sec: 1343.09 - lr: 0.000024 - momentum: 0.000000
|
379 |
+
2023-10-24 19:26:03,534 epoch 3 - iter 1584/1984 - loss 0.08551290 - time (sec): 97.13 - samples/sec: 1344.76 - lr: 0.000024 - momentum: 0.000000
|
380 |
+
2023-10-24 19:26:15,614 epoch 3 - iter 1782/1984 - loss 0.08579605 - time (sec): 109.21 - samples/sec: 1348.07 - lr: 0.000024 - momentum: 0.000000
|
381 |
+
2023-10-24 19:26:27,719 epoch 3 - iter 1980/1984 - loss 0.08549504 - time (sec): 121.31 - samples/sec: 1349.14 - lr: 0.000023 - momentum: 0.000000
|
382 |
+
2023-10-24 19:26:27,962 ----------------------------------------------------------------------------------------------------
|
383 |
+
2023-10-24 19:26:27,962 EPOCH 3 done: loss 0.0857 - lr: 0.000023
|
384 |
+
2023-10-24 19:26:31,075 DEV : loss 0.12287832796573639 - f1-score (micro avg) 0.756
|
385 |
+
2023-10-24 19:26:31,090 saving best model
|
386 |
+
2023-10-24 19:26:31,684 ----------------------------------------------------------------------------------------------------
|
387 |
+
2023-10-24 19:26:43,776 epoch 4 - iter 198/1984 - loss 0.05492174 - time (sec): 12.09 - samples/sec: 1306.03 - lr: 0.000023 - momentum: 0.000000
|
388 |
+
2023-10-24 19:26:55,794 epoch 4 - iter 396/1984 - loss 0.06173660 - time (sec): 24.11 - samples/sec: 1325.23 - lr: 0.000023 - momentum: 0.000000
|
389 |
+
2023-10-24 19:27:07,916 epoch 4 - iter 594/1984 - loss 0.06108648 - time (sec): 36.23 - samples/sec: 1329.97 - lr: 0.000022 - momentum: 0.000000
|
390 |
+
2023-10-24 19:27:19,998 epoch 4 - iter 792/1984 - loss 0.06054768 - time (sec): 48.31 - samples/sec: 1333.58 - lr: 0.000022 - momentum: 0.000000
|
391 |
+
2023-10-24 19:27:32,167 epoch 4 - iter 990/1984 - loss 0.06244785 - time (sec): 60.48 - samples/sec: 1341.29 - lr: 0.000022 - momentum: 0.000000
|
392 |
+
2023-10-24 19:27:44,204 epoch 4 - iter 1188/1984 - loss 0.06144580 - time (sec): 72.52 - samples/sec: 1342.52 - lr: 0.000021 - momentum: 0.000000
|
393 |
+
2023-10-24 19:27:56,373 epoch 4 - iter 1386/1984 - loss 0.06113227 - time (sec): 84.69 - samples/sec: 1348.41 - lr: 0.000021 - momentum: 0.000000
|
394 |
+
2023-10-24 19:28:09,135 epoch 4 - iter 1584/1984 - loss 0.06036745 - time (sec): 97.45 - samples/sec: 1352.40 - lr: 0.000021 - momentum: 0.000000
|
395 |
+
2023-10-24 19:28:21,273 epoch 4 - iter 1782/1984 - loss 0.06099629 - time (sec): 109.59 - samples/sec: 1351.83 - lr: 0.000020 - momentum: 0.000000
|
396 |
+
2023-10-24 19:28:33,327 epoch 4 - iter 1980/1984 - loss 0.06067905 - time (sec): 121.64 - samples/sec: 1346.46 - lr: 0.000020 - momentum: 0.000000
|
397 |
+
2023-10-24 19:28:33,553 ----------------------------------------------------------------------------------------------------
|
398 |
+
2023-10-24 19:28:33,553 EPOCH 4 done: loss 0.0607 - lr: 0.000020
|
399 |
+
2023-10-24 19:28:36,684 DEV : loss 0.1927175521850586 - f1-score (micro avg) 0.7183
|
400 |
+
2023-10-24 19:28:36,699 ----------------------------------------------------------------------------------------------------
|
401 |
+
2023-10-24 19:28:48,910 epoch 5 - iter 198/1984 - loss 0.04671831 - time (sec): 12.21 - samples/sec: 1361.09 - lr: 0.000020 - momentum: 0.000000
|
402 |
+
2023-10-24 19:29:01,027 epoch 5 - iter 396/1984 - loss 0.04574779 - time (sec): 24.33 - samples/sec: 1356.48 - lr: 0.000019 - momentum: 0.000000
|
403 |
+
2023-10-24 19:29:13,073 epoch 5 - iter 594/1984 - loss 0.04539830 - time (sec): 36.37 - samples/sec: 1356.89 - lr: 0.000019 - momentum: 0.000000
|
404 |
+
2023-10-24 19:29:25,286 epoch 5 - iter 792/1984 - loss 0.04680807 - time (sec): 48.59 - samples/sec: 1358.20 - lr: 0.000019 - momentum: 0.000000
|
405 |
+
2023-10-24 19:29:37,625 epoch 5 - iter 990/1984 - loss 0.04441270 - time (sec): 60.93 - samples/sec: 1373.34 - lr: 0.000018 - momentum: 0.000000
|
406 |
+
2023-10-24 19:29:49,703 epoch 5 - iter 1188/1984 - loss 0.04380522 - time (sec): 73.00 - samples/sec: 1369.44 - lr: 0.000018 - momentum: 0.000000
|
407 |
+
2023-10-24 19:30:02,105 epoch 5 - iter 1386/1984 - loss 0.04443524 - time (sec): 85.41 - samples/sec: 1371.38 - lr: 0.000018 - momentum: 0.000000
|
408 |
+
2023-10-24 19:30:14,134 epoch 5 - iter 1584/1984 - loss 0.04578146 - time (sec): 97.43 - samples/sec: 1363.32 - lr: 0.000017 - momentum: 0.000000
|
409 |
+
2023-10-24 19:30:26,194 epoch 5 - iter 1782/1984 - loss 0.04603563 - time (sec): 109.49 - samples/sec: 1350.91 - lr: 0.000017 - momentum: 0.000000
|
410 |
+
2023-10-24 19:30:38,245 epoch 5 - iter 1980/1984 - loss 0.04522297 - time (sec): 121.55 - samples/sec: 1347.11 - lr: 0.000017 - momentum: 0.000000
|
411 |
+
2023-10-24 19:30:38,479 ----------------------------------------------------------------------------------------------------
|
412 |
+
2023-10-24 19:30:38,479 EPOCH 5 done: loss 0.0455 - lr: 0.000017
|
413 |
+
2023-10-24 19:30:41,600 DEV : loss 0.1995469629764557 - f1-score (micro avg) 0.7543
|
414 |
+
2023-10-24 19:30:41,615 ----------------------------------------------------------------------------------------------------
|
415 |
+
2023-10-24 19:30:53,777 epoch 6 - iter 198/1984 - loss 0.03231291 - time (sec): 12.16 - samples/sec: 1357.15 - lr: 0.000016 - momentum: 0.000000
|
416 |
+
2023-10-24 19:31:05,778 epoch 6 - iter 396/1984 - loss 0.03397784 - time (sec): 24.16 - samples/sec: 1328.30 - lr: 0.000016 - momentum: 0.000000
|
417 |
+
2023-10-24 19:31:17,884 epoch 6 - iter 594/1984 - loss 0.03041311 - time (sec): 36.27 - samples/sec: 1346.65 - lr: 0.000016 - momentum: 0.000000
|
418 |
+
2023-10-24 19:31:30,370 epoch 6 - iter 792/1984 - loss 0.03190695 - time (sec): 48.75 - samples/sec: 1370.84 - lr: 0.000015 - momentum: 0.000000
|
419 |
+
2023-10-24 19:31:42,871 epoch 6 - iter 990/1984 - loss 0.03341697 - time (sec): 61.25 - samples/sec: 1348.17 - lr: 0.000015 - momentum: 0.000000
|
420 |
+
2023-10-24 19:31:54,884 epoch 6 - iter 1188/1984 - loss 0.03375744 - time (sec): 73.27 - samples/sec: 1340.20 - lr: 0.000015 - momentum: 0.000000
|
421 |
+
2023-10-24 19:32:06,956 epoch 6 - iter 1386/1984 - loss 0.03312953 - time (sec): 85.34 - samples/sec: 1337.39 - lr: 0.000014 - momentum: 0.000000
|
422 |
+
2023-10-24 19:32:19,204 epoch 6 - iter 1584/1984 - loss 0.03383901 - time (sec): 97.59 - samples/sec: 1339.64 - lr: 0.000014 - momentum: 0.000000
|
423 |
+
2023-10-24 19:32:31,450 epoch 6 - iter 1782/1984 - loss 0.03389974 - time (sec): 109.83 - samples/sec: 1343.73 - lr: 0.000014 - momentum: 0.000000
|
424 |
+
2023-10-24 19:32:43,633 epoch 6 - iter 1980/1984 - loss 0.03407852 - time (sec): 122.02 - samples/sec: 1341.61 - lr: 0.000013 - momentum: 0.000000
|
425 |
+
2023-10-24 19:32:43,869 ----------------------------------------------------------------------------------------------------
|
426 |
+
2023-10-24 19:32:43,870 EPOCH 6 done: loss 0.0340 - lr: 0.000013
|
427 |
+
2023-10-24 19:32:46,992 DEV : loss 0.20763596892356873 - f1-score (micro avg) 0.774
|
428 |
+
2023-10-24 19:32:47,007 saving best model
|
429 |
+
2023-10-24 19:32:47,627 ----------------------------------------------------------------------------------------------------
|
430 |
+
2023-10-24 19:32:59,661 epoch 7 - iter 198/1984 - loss 0.02133725 - time (sec): 12.03 - samples/sec: 1354.69 - lr: 0.000013 - momentum: 0.000000
|
431 |
+
2023-10-24 19:33:11,642 epoch 7 - iter 396/1984 - loss 0.02091982 - time (sec): 24.01 - samples/sec: 1330.34 - lr: 0.000013 - momentum: 0.000000
|
432 |
+
2023-10-24 19:33:23,661 epoch 7 - iter 594/1984 - loss 0.02302967 - time (sec): 36.03 - samples/sec: 1331.94 - lr: 0.000012 - momentum: 0.000000
|
433 |
+
2023-10-24 19:33:36,085 epoch 7 - iter 792/1984 - loss 0.02423421 - time (sec): 48.46 - samples/sec: 1350.67 - lr: 0.000012 - momentum: 0.000000
|
434 |
+
2023-10-24 19:33:48,050 epoch 7 - iter 990/1984 - loss 0.02379088 - time (sec): 60.42 - samples/sec: 1344.83 - lr: 0.000012 - momentum: 0.000000
|
435 |
+
2023-10-24 19:34:00,094 epoch 7 - iter 1188/1984 - loss 0.02343269 - time (sec): 72.47 - samples/sec: 1345.70 - lr: 0.000011 - momentum: 0.000000
|
436 |
+
2023-10-24 19:34:12,236 epoch 7 - iter 1386/1984 - loss 0.02524471 - time (sec): 84.61 - samples/sec: 1347.56 - lr: 0.000011 - momentum: 0.000000
|
437 |
+
2023-10-24 19:34:24,424 epoch 7 - iter 1584/1984 - loss 0.02464132 - time (sec): 96.80 - samples/sec: 1347.23 - lr: 0.000011 - momentum: 0.000000
|
438 |
+
2023-10-24 19:34:36,539 epoch 7 - iter 1782/1984 - loss 0.02431973 - time (sec): 108.91 - samples/sec: 1347.67 - lr: 0.000010 - momentum: 0.000000
|
439 |
+
2023-10-24 19:34:48,863 epoch 7 - iter 1980/1984 - loss 0.02469436 - time (sec): 121.23 - samples/sec: 1350.73 - lr: 0.000010 - momentum: 0.000000
|
440 |
+
2023-10-24 19:34:49,087 ----------------------------------------------------------------------------------------------------
|
441 |
+
2023-10-24 19:34:49,087 EPOCH 7 done: loss 0.0247 - lr: 0.000010
|
442 |
+
2023-10-24 19:34:52,192 DEV : loss 0.22793228924274445 - f1-score (micro avg) 0.7628
|
443 |
+
2023-10-24 19:34:52,207 ----------------------------------------------------------------------------------------------------
|
444 |
+
2023-10-24 19:35:04,591 epoch 8 - iter 198/1984 - loss 0.01770350 - time (sec): 12.38 - samples/sec: 1317.10 - lr: 0.000010 - momentum: 0.000000
|
445 |
+
2023-10-24 19:35:16,521 epoch 8 - iter 396/1984 - loss 0.01496629 - time (sec): 24.31 - samples/sec: 1309.49 - lr: 0.000009 - momentum: 0.000000
|
446 |
+
2023-10-24 19:35:28,965 epoch 8 - iter 594/1984 - loss 0.01607839 - time (sec): 36.76 - samples/sec: 1345.79 - lr: 0.000009 - momentum: 0.000000
|
447 |
+
2023-10-24 19:35:40,927 epoch 8 - iter 792/1984 - loss 0.01770098 - time (sec): 48.72 - samples/sec: 1335.77 - lr: 0.000009 - momentum: 0.000000
|
448 |
+
2023-10-24 19:35:53,081 epoch 8 - iter 990/1984 - loss 0.01788262 - time (sec): 60.87 - samples/sec: 1342.78 - lr: 0.000008 - momentum: 0.000000
|
449 |
+
2023-10-24 19:36:05,273 epoch 8 - iter 1188/1984 - loss 0.01779408 - time (sec): 73.06 - samples/sec: 1342.96 - lr: 0.000008 - momentum: 0.000000
|
450 |
+
2023-10-24 19:36:17,387 epoch 8 - iter 1386/1984 - loss 0.01703299 - time (sec): 85.18 - samples/sec: 1345.43 - lr: 0.000008 - momentum: 0.000000
|
451 |
+
2023-10-24 19:36:29,612 epoch 8 - iter 1584/1984 - loss 0.01716121 - time (sec): 97.40 - samples/sec: 1341.02 - lr: 0.000007 - momentum: 0.000000
|
452 |
+
2023-10-24 19:36:41,523 epoch 8 - iter 1782/1984 - loss 0.01672368 - time (sec): 109.31 - samples/sec: 1345.12 - lr: 0.000007 - momentum: 0.000000
|
453 |
+
2023-10-24 19:36:53,631 epoch 8 - iter 1980/1984 - loss 0.01650254 - time (sec): 121.42 - samples/sec: 1347.56 - lr: 0.000007 - momentum: 0.000000
|
454 |
+
2023-10-24 19:36:53,873 ----------------------------------------------------------------------------------------------------
|
455 |
+
2023-10-24 19:36:53,873 EPOCH 8 done: loss 0.0165 - lr: 0.000007
|
456 |
+
2023-10-24 19:36:56,983 DEV : loss 0.23265020549297333 - f1-score (micro avg) 0.765
|
457 |
+
2023-10-24 19:36:56,998 ----------------------------------------------------------------------------------------------------
|
458 |
+
2023-10-24 19:37:08,934 epoch 9 - iter 198/1984 - loss 0.01460665 - time (sec): 11.94 - samples/sec: 1310.79 - lr: 0.000006 - momentum: 0.000000
|
459 |
+
2023-10-24 19:37:20,956 epoch 9 - iter 396/1984 - loss 0.01489846 - time (sec): 23.96 - samples/sec: 1330.22 - lr: 0.000006 - momentum: 0.000000
|
460 |
+
2023-10-24 19:37:32,982 epoch 9 - iter 594/1984 - loss 0.01459467 - time (sec): 35.98 - samples/sec: 1306.08 - lr: 0.000006 - momentum: 0.000000
|
461 |
+
2023-10-24 19:37:45,075 epoch 9 - iter 792/1984 - loss 0.01270058 - time (sec): 48.08 - samples/sec: 1327.28 - lr: 0.000005 - momentum: 0.000000
|
462 |
+
2023-10-24 19:37:57,137 epoch 9 - iter 990/1984 - loss 0.01265837 - time (sec): 60.14 - samples/sec: 1334.58 - lr: 0.000005 - momentum: 0.000000
|
463 |
+
2023-10-24 19:38:09,538 epoch 9 - iter 1188/1984 - loss 0.01297891 - time (sec): 72.54 - samples/sec: 1344.49 - lr: 0.000005 - momentum: 0.000000
|
464 |
+
2023-10-24 19:38:21,385 epoch 9 - iter 1386/1984 - loss 0.01248831 - time (sec): 84.39 - samples/sec: 1340.15 - lr: 0.000004 - momentum: 0.000000
|
465 |
+
2023-10-24 19:38:33,965 epoch 9 - iter 1584/1984 - loss 0.01258510 - time (sec): 96.97 - samples/sec: 1356.27 - lr: 0.000004 - momentum: 0.000000
|
466 |
+
2023-10-24 19:38:46,104 epoch 9 - iter 1782/1984 - loss 0.01225636 - time (sec): 109.11 - samples/sec: 1353.36 - lr: 0.000004 - momentum: 0.000000
|
467 |
+
2023-10-24 19:38:58,070 epoch 9 - iter 1980/1984 - loss 0.01210063 - time (sec): 121.07 - samples/sec: 1351.07 - lr: 0.000003 - momentum: 0.000000
|
468 |
+
2023-10-24 19:38:58,346 ----------------------------------------------------------------------------------------------------
|
469 |
+
2023-10-24 19:38:58,346 EPOCH 9 done: loss 0.0121 - lr: 0.000003
|
470 |
+
2023-10-24 19:39:01,778 DEV : loss 0.244042307138443 - f1-score (micro avg) 0.7587
|
471 |
+
2023-10-24 19:39:01,793 ----------------------------------------------------------------------------------------------------
|
472 |
+
2023-10-24 19:39:14,043 epoch 10 - iter 198/1984 - loss 0.01126873 - time (sec): 12.25 - samples/sec: 1403.09 - lr: 0.000003 - momentum: 0.000000
|
473 |
+
2023-10-24 19:39:26,290 epoch 10 - iter 396/1984 - loss 0.01079960 - time (sec): 24.50 - samples/sec: 1376.43 - lr: 0.000003 - momentum: 0.000000
|
474 |
+
2023-10-24 19:39:38,492 epoch 10 - iter 594/1984 - loss 0.00920357 - time (sec): 36.70 - samples/sec: 1391.31 - lr: 0.000002 - momentum: 0.000000
|
475 |
+
2023-10-24 19:39:50,933 epoch 10 - iter 792/1984 - loss 0.00891660 - time (sec): 49.14 - samples/sec: 1389.24 - lr: 0.000002 - momentum: 0.000000
|
476 |
+
2023-10-24 19:40:02,800 epoch 10 - iter 990/1984 - loss 0.00864161 - time (sec): 61.01 - samples/sec: 1368.26 - lr: 0.000002 - momentum: 0.000000
|
477 |
+
2023-10-24 19:40:14,924 epoch 10 - iter 1188/1984 - loss 0.00926189 - time (sec): 73.13 - samples/sec: 1364.12 - lr: 0.000001 - momentum: 0.000000
|
478 |
+
2023-10-24 19:40:26,822 epoch 10 - iter 1386/1984 - loss 0.00915410 - time (sec): 85.03 - samples/sec: 1349.75 - lr: 0.000001 - momentum: 0.000000
|
479 |
+
2023-10-24 19:40:38,890 epoch 10 - iter 1584/1984 - loss 0.00899681 - time (sec): 97.10 - samples/sec: 1349.54 - lr: 0.000001 - momentum: 0.000000
|
480 |
+
2023-10-24 19:40:51,050 epoch 10 - iter 1782/1984 - loss 0.00863704 - time (sec): 109.26 - samples/sec: 1350.21 - lr: 0.000000 - momentum: 0.000000
|
481 |
+
2023-10-24 19:41:03,100 epoch 10 - iter 1980/1984 - loss 0.00877194 - time (sec): 121.31 - samples/sec: 1348.60 - lr: 0.000000 - momentum: 0.000000
|
482 |
+
2023-10-24 19:41:03,350 ----------------------------------------------------------------------------------------------------
|
483 |
+
2023-10-24 19:41:03,350 EPOCH 10 done: loss 0.0088 - lr: 0.000000
|
484 |
+
2023-10-24 19:41:06,471 DEV : loss 0.25166356563568115 - f1-score (micro avg) 0.7624
|
485 |
+
2023-10-24 19:41:06,956 ----------------------------------------------------------------------------------------------------
|
486 |
+
2023-10-24 19:41:06,956 Loading model from best epoch ...
|
487 |
+
2023-10-24 19:41:08,420 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG
|
488 |
+
2023-10-24 19:41:11,490
|
489 |
+
Results:
|
490 |
+
- F-score (micro) 0.7761
|
491 |
+
- F-score (macro) 0.6778
|
492 |
+
- Accuracy 0.6586
|
493 |
+
|
494 |
+
By class:
|
495 |
+
precision recall f1-score support
|
496 |
+
|
497 |
+
LOC 0.8447 0.8305 0.8376 655
|
498 |
+
PER 0.6996 0.7937 0.7437 223
|
499 |
+
ORG 0.6250 0.3543 0.4523 127
|
500 |
+
|
501 |
+
micro avg 0.7905 0.7622 0.7761 1005
|
502 |
+
macro avg 0.7231 0.6595 0.6778 1005
|
503 |
+
weighted avg 0.7848 0.7622 0.7680 1005
|
504 |
+
|
505 |
+
2023-10-24 19:41:11,490 ----------------------------------------------------------------------------------------------------
|