Upload ./training.log with huggingface_hub
Browse files- training.log +504 -0
training.log
ADDED
@@ -0,0 +1,504 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-24 17:53:07,606 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-24 17:53:07,607 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): BertLayer(
|
39 |
+
(attention): BertAttention(
|
40 |
+
(self): BertSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): BertSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): BertIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): BertOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): BertLayer(
|
63 |
+
(attention): BertAttention(
|
64 |
+
(self): BertSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): BertSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): BertIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): BertOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): BertLayer(
|
87 |
+
(attention): BertAttention(
|
88 |
+
(self): BertSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): BertSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): BertIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): BertOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): BertLayer(
|
111 |
+
(attention): BertAttention(
|
112 |
+
(self): BertSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): BertSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): BertIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): BertOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): BertLayer(
|
135 |
+
(attention): BertAttention(
|
136 |
+
(self): BertSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): BertSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): BertIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): BertOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): BertLayer(
|
159 |
+
(attention): BertAttention(
|
160 |
+
(self): BertSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): BertSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): BertIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): BertOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): BertLayer(
|
183 |
+
(attention): BertAttention(
|
184 |
+
(self): BertSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): BertSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): BertIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): BertOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): BertLayer(
|
207 |
+
(attention): BertAttention(
|
208 |
+
(self): BertSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): BertSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): BertIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): BertOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): BertLayer(
|
231 |
+
(attention): BertAttention(
|
232 |
+
(self): BertSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): BertSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): BertIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): BertOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): BertLayer(
|
255 |
+
(attention): BertAttention(
|
256 |
+
(self): BertSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): BertSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): BertIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): BertOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): BertLayer(
|
279 |
+
(attention): BertAttention(
|
280 |
+
(self): BertSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): BertSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): BertIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): BertOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(pooler): BertPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
307 |
+
)
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(locked_dropout): LockedDropout(p=0.5)
|
311 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
312 |
+
(loss_function): CrossEntropyLoss()
|
313 |
+
)"
|
314 |
+
2023-10-24 17:53:07,607 ----------------------------------------------------------------------------------------------------
|
315 |
+
2023-10-24 17:53:07,607 MultiCorpus: 7936 train + 992 dev + 992 test sentences
|
316 |
+
- NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /home/ubuntu/.flair/datasets/ner_icdar_europeana/fr
|
317 |
+
2023-10-24 17:53:07,607 ----------------------------------------------------------------------------------------------------
|
318 |
+
2023-10-24 17:53:07,607 Train: 7936 sentences
|
319 |
+
2023-10-24 17:53:07,607 (train_with_dev=False, train_with_test=False)
|
320 |
+
2023-10-24 17:53:07,607 ----------------------------------------------------------------------------------------------------
|
321 |
+
2023-10-24 17:53:07,607 Training Params:
|
322 |
+
2023-10-24 17:53:07,607 - learning_rate: "5e-05"
|
323 |
+
2023-10-24 17:53:07,607 - mini_batch_size: "8"
|
324 |
+
2023-10-24 17:53:07,607 - max_epochs: "10"
|
325 |
+
2023-10-24 17:53:07,607 - shuffle: "True"
|
326 |
+
2023-10-24 17:53:07,607 ----------------------------------------------------------------------------------------------------
|
327 |
+
2023-10-24 17:53:07,607 Plugins:
|
328 |
+
2023-10-24 17:53:07,607 - TensorboardLogger
|
329 |
+
2023-10-24 17:53:07,607 - LinearScheduler | warmup_fraction: '0.1'
|
330 |
+
2023-10-24 17:53:07,607 ----------------------------------------------------------------------------------------------------
|
331 |
+
2023-10-24 17:53:07,607 Final evaluation on model from best epoch (best-model.pt)
|
332 |
+
2023-10-24 17:53:07,608 - metric: "('micro avg', 'f1-score')"
|
333 |
+
2023-10-24 17:53:07,608 ----------------------------------------------------------------------------------------------------
|
334 |
+
2023-10-24 17:53:07,608 Computation:
|
335 |
+
2023-10-24 17:53:07,608 - compute on device: cuda:0
|
336 |
+
2023-10-24 17:53:07,608 - embedding storage: none
|
337 |
+
2023-10-24 17:53:07,608 ----------------------------------------------------------------------------------------------------
|
338 |
+
2023-10-24 17:53:07,608 Model training base path: "hmbench-icdar/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3"
|
339 |
+
2023-10-24 17:53:07,608 ----------------------------------------------------------------------------------------------------
|
340 |
+
2023-10-24 17:53:07,608 ----------------------------------------------------------------------------------------------------
|
341 |
+
2023-10-24 17:53:07,608 Logging anything other than scalars to TensorBoard is currently not supported.
|
342 |
+
2023-10-24 17:53:16,110 epoch 1 - iter 99/992 - loss 1.45019353 - time (sec): 8.50 - samples/sec: 2052.11 - lr: 0.000005 - momentum: 0.000000
|
343 |
+
2023-10-24 17:53:24,479 epoch 1 - iter 198/992 - loss 0.90651188 - time (sec): 16.87 - samples/sec: 1995.74 - lr: 0.000010 - momentum: 0.000000
|
344 |
+
2023-10-24 17:53:32,526 epoch 1 - iter 297/992 - loss 0.68242155 - time (sec): 24.92 - samples/sec: 1970.50 - lr: 0.000015 - momentum: 0.000000
|
345 |
+
2023-10-24 17:53:40,903 epoch 1 - iter 396/992 - loss 0.55232472 - time (sec): 33.29 - samples/sec: 1971.25 - lr: 0.000020 - momentum: 0.000000
|
346 |
+
2023-10-24 17:53:49,010 epoch 1 - iter 495/992 - loss 0.47511537 - time (sec): 41.40 - samples/sec: 1964.36 - lr: 0.000025 - momentum: 0.000000
|
347 |
+
2023-10-24 17:53:57,155 epoch 1 - iter 594/992 - loss 0.42026811 - time (sec): 49.55 - samples/sec: 1960.16 - lr: 0.000030 - momentum: 0.000000
|
348 |
+
2023-10-24 17:54:05,777 epoch 1 - iter 693/992 - loss 0.37516782 - time (sec): 58.17 - samples/sec: 1957.77 - lr: 0.000035 - momentum: 0.000000
|
349 |
+
2023-10-24 17:54:14,242 epoch 1 - iter 792/992 - loss 0.34277188 - time (sec): 66.63 - samples/sec: 1955.19 - lr: 0.000040 - momentum: 0.000000
|
350 |
+
2023-10-24 17:54:22,644 epoch 1 - iter 891/992 - loss 0.32033942 - time (sec): 75.04 - samples/sec: 1963.07 - lr: 0.000045 - momentum: 0.000000
|
351 |
+
2023-10-24 17:54:31,054 epoch 1 - iter 990/992 - loss 0.30228680 - time (sec): 83.45 - samples/sec: 1960.73 - lr: 0.000050 - momentum: 0.000000
|
352 |
+
2023-10-24 17:54:31,234 ----------------------------------------------------------------------------------------------------
|
353 |
+
2023-10-24 17:54:31,235 EPOCH 1 done: loss 0.3019 - lr: 0.000050
|
354 |
+
2023-10-24 17:54:34,306 DEV : loss 0.08691307157278061 - f1-score (micro avg) 0.7201
|
355 |
+
2023-10-24 17:54:34,321 saving best model
|
356 |
+
2023-10-24 17:54:34,791 ----------------------------------------------------------------------------------------------------
|
357 |
+
2023-10-24 17:54:42,930 epoch 2 - iter 99/992 - loss 0.09527419 - time (sec): 8.14 - samples/sec: 2003.53 - lr: 0.000049 - momentum: 0.000000
|
358 |
+
2023-10-24 17:54:51,239 epoch 2 - iter 198/992 - loss 0.09556154 - time (sec): 16.45 - samples/sec: 1975.24 - lr: 0.000049 - momentum: 0.000000
|
359 |
+
2023-10-24 17:54:59,412 epoch 2 - iter 297/992 - loss 0.09905757 - time (sec): 24.62 - samples/sec: 1984.65 - lr: 0.000048 - momentum: 0.000000
|
360 |
+
2023-10-24 17:55:07,962 epoch 2 - iter 396/992 - loss 0.10241445 - time (sec): 33.17 - samples/sec: 1977.76 - lr: 0.000048 - momentum: 0.000000
|
361 |
+
2023-10-24 17:55:16,323 epoch 2 - iter 495/992 - loss 0.10157096 - time (sec): 41.53 - samples/sec: 1984.19 - lr: 0.000047 - momentum: 0.000000
|
362 |
+
2023-10-24 17:55:24,569 epoch 2 - iter 594/992 - loss 0.10195348 - time (sec): 49.78 - samples/sec: 1983.29 - lr: 0.000047 - momentum: 0.000000
|
363 |
+
2023-10-24 17:55:33,030 epoch 2 - iter 693/992 - loss 0.10065037 - time (sec): 58.24 - samples/sec: 1983.87 - lr: 0.000046 - momentum: 0.000000
|
364 |
+
2023-10-24 17:55:41,369 epoch 2 - iter 792/992 - loss 0.09922714 - time (sec): 66.58 - samples/sec: 1970.91 - lr: 0.000046 - momentum: 0.000000
|
365 |
+
2023-10-24 17:55:49,709 epoch 2 - iter 891/992 - loss 0.09994013 - time (sec): 74.92 - samples/sec: 1964.70 - lr: 0.000045 - momentum: 0.000000
|
366 |
+
2023-10-24 17:55:58,196 epoch 2 - iter 990/992 - loss 0.10114388 - time (sec): 83.40 - samples/sec: 1963.04 - lr: 0.000044 - momentum: 0.000000
|
367 |
+
2023-10-24 17:55:58,341 ----------------------------------------------------------------------------------------------------
|
368 |
+
2023-10-24 17:55:58,341 EPOCH 2 done: loss 0.1011 - lr: 0.000044
|
369 |
+
2023-10-24 17:56:01,444 DEV : loss 0.09098362177610397 - f1-score (micro avg) 0.743
|
370 |
+
2023-10-24 17:56:01,459 saving best model
|
371 |
+
2023-10-24 17:56:02,049 ----------------------------------------------------------------------------------------------------
|
372 |
+
2023-10-24 17:56:10,259 epoch 3 - iter 99/992 - loss 0.06165896 - time (sec): 8.21 - samples/sec: 1971.22 - lr: 0.000044 - momentum: 0.000000
|
373 |
+
2023-10-24 17:56:18,758 epoch 3 - iter 198/992 - loss 0.06593462 - time (sec): 16.71 - samples/sec: 1971.74 - lr: 0.000043 - momentum: 0.000000
|
374 |
+
2023-10-24 17:56:27,234 epoch 3 - iter 297/992 - loss 0.07089123 - time (sec): 25.18 - samples/sec: 1940.51 - lr: 0.000043 - momentum: 0.000000
|
375 |
+
2023-10-24 17:56:35,331 epoch 3 - iter 396/992 - loss 0.06905276 - time (sec): 33.28 - samples/sec: 1946.67 - lr: 0.000042 - momentum: 0.000000
|
376 |
+
2023-10-24 17:56:44,066 epoch 3 - iter 495/992 - loss 0.06665018 - time (sec): 42.02 - samples/sec: 1961.30 - lr: 0.000042 - momentum: 0.000000
|
377 |
+
2023-10-24 17:56:52,473 epoch 3 - iter 594/992 - loss 0.06883315 - time (sec): 50.42 - samples/sec: 1959.12 - lr: 0.000041 - momentum: 0.000000
|
378 |
+
2023-10-24 17:57:00,614 epoch 3 - iter 693/992 - loss 0.06972989 - time (sec): 58.56 - samples/sec: 1959.41 - lr: 0.000041 - momentum: 0.000000
|
379 |
+
2023-10-24 17:57:09,003 epoch 3 - iter 792/992 - loss 0.06920701 - time (sec): 66.95 - samples/sec: 1961.79 - lr: 0.000040 - momentum: 0.000000
|
380 |
+
2023-10-24 17:57:17,427 epoch 3 - iter 891/992 - loss 0.06875715 - time (sec): 75.38 - samples/sec: 1961.18 - lr: 0.000039 - momentum: 0.000000
|
381 |
+
2023-10-24 17:57:25,554 epoch 3 - iter 990/992 - loss 0.06866266 - time (sec): 83.50 - samples/sec: 1960.90 - lr: 0.000039 - momentum: 0.000000
|
382 |
+
2023-10-24 17:57:25,711 ----------------------------------------------------------------------------------------------------
|
383 |
+
2023-10-24 17:57:25,711 EPOCH 3 done: loss 0.0686 - lr: 0.000039
|
384 |
+
2023-10-24 17:57:28,825 DEV : loss 0.10797995328903198 - f1-score (micro avg) 0.7225
|
385 |
+
2023-10-24 17:57:28,840 ----------------------------------------------------------------------------------------------------
|
386 |
+
2023-10-24 17:57:36,940 epoch 4 - iter 99/992 - loss 0.04262884 - time (sec): 8.10 - samples/sec: 1951.86 - lr: 0.000038 - momentum: 0.000000
|
387 |
+
2023-10-24 17:57:45,681 epoch 4 - iter 198/992 - loss 0.04995344 - time (sec): 16.84 - samples/sec: 1947.00 - lr: 0.000038 - momentum: 0.000000
|
388 |
+
2023-10-24 17:57:54,126 epoch 4 - iter 297/992 - loss 0.04925014 - time (sec): 25.28 - samples/sec: 1947.25 - lr: 0.000037 - momentum: 0.000000
|
389 |
+
2023-10-24 17:58:02,267 epoch 4 - iter 396/992 - loss 0.05068279 - time (sec): 33.43 - samples/sec: 1948.76 - lr: 0.000037 - momentum: 0.000000
|
390 |
+
2023-10-24 17:58:10,475 epoch 4 - iter 495/992 - loss 0.05043456 - time (sec): 41.63 - samples/sec: 1960.24 - lr: 0.000036 - momentum: 0.000000
|
391 |
+
2023-10-24 17:58:18,115 epoch 4 - iter 594/992 - loss 0.04948632 - time (sec): 49.27 - samples/sec: 1955.28 - lr: 0.000036 - momentum: 0.000000
|
392 |
+
2023-10-24 17:58:26,645 epoch 4 - iter 693/992 - loss 0.05029241 - time (sec): 57.80 - samples/sec: 1963.09 - lr: 0.000035 - momentum: 0.000000
|
393 |
+
2023-10-24 17:58:35,036 epoch 4 - iter 792/992 - loss 0.05054238 - time (sec): 66.19 - samples/sec: 1959.75 - lr: 0.000034 - momentum: 0.000000
|
394 |
+
2023-10-24 17:58:43,142 epoch 4 - iter 891/992 - loss 0.04973429 - time (sec): 74.30 - samples/sec: 1968.56 - lr: 0.000034 - momentum: 0.000000
|
395 |
+
2023-10-24 17:58:52,072 epoch 4 - iter 990/992 - loss 0.04918421 - time (sec): 83.23 - samples/sec: 1966.28 - lr: 0.000033 - momentum: 0.000000
|
396 |
+
2023-10-24 17:58:52,222 ----------------------------------------------------------------------------------------------------
|
397 |
+
2023-10-24 17:58:52,222 EPOCH 4 done: loss 0.0491 - lr: 0.000033
|
398 |
+
2023-10-24 17:58:55,339 DEV : loss 0.16018341481685638 - f1-score (micro avg) 0.7368
|
399 |
+
2023-10-24 17:58:55,354 ----------------------------------------------------------------------------------------------------
|
400 |
+
2023-10-24 17:59:03,855 epoch 5 - iter 99/992 - loss 0.03275354 - time (sec): 8.50 - samples/sec: 1998.54 - lr: 0.000033 - momentum: 0.000000
|
401 |
+
2023-10-24 17:59:12,128 epoch 5 - iter 198/992 - loss 0.03475824 - time (sec): 16.77 - samples/sec: 1968.33 - lr: 0.000032 - momentum: 0.000000
|
402 |
+
2023-10-24 17:59:20,968 epoch 5 - iter 297/992 - loss 0.03421394 - time (sec): 25.61 - samples/sec: 1935.93 - lr: 0.000032 - momentum: 0.000000
|
403 |
+
2023-10-24 17:59:29,192 epoch 5 - iter 396/992 - loss 0.03443327 - time (sec): 33.84 - samples/sec: 1928.20 - lr: 0.000031 - momentum: 0.000000
|
404 |
+
2023-10-24 17:59:37,436 epoch 5 - iter 495/992 - loss 0.03822480 - time (sec): 42.08 - samples/sec: 1946.88 - lr: 0.000031 - momentum: 0.000000
|
405 |
+
2023-10-24 17:59:45,453 epoch 5 - iter 594/992 - loss 0.03666575 - time (sec): 50.10 - samples/sec: 1952.70 - lr: 0.000030 - momentum: 0.000000
|
406 |
+
2023-10-24 17:59:54,159 epoch 5 - iter 693/992 - loss 0.03753706 - time (sec): 58.80 - samples/sec: 1951.41 - lr: 0.000029 - momentum: 0.000000
|
407 |
+
2023-10-24 18:00:02,511 epoch 5 - iter 792/992 - loss 0.03848741 - time (sec): 67.16 - samples/sec: 1952.21 - lr: 0.000029 - momentum: 0.000000
|
408 |
+
2023-10-24 18:00:10,602 epoch 5 - iter 891/992 - loss 0.03850444 - time (sec): 75.25 - samples/sec: 1953.08 - lr: 0.000028 - momentum: 0.000000
|
409 |
+
2023-10-24 18:00:19,094 epoch 5 - iter 990/992 - loss 0.03746891 - time (sec): 83.74 - samples/sec: 1954.15 - lr: 0.000028 - momentum: 0.000000
|
410 |
+
2023-10-24 18:00:19,260 ----------------------------------------------------------------------------------------------------
|
411 |
+
2023-10-24 18:00:19,260 EPOCH 5 done: loss 0.0374 - lr: 0.000028
|
412 |
+
2023-10-24 18:00:22,383 DEV : loss 0.17979347705841064 - f1-score (micro avg) 0.7377
|
413 |
+
2023-10-24 18:00:22,399 ----------------------------------------------------------------------------------------------------
|
414 |
+
2023-10-24 18:00:30,989 epoch 6 - iter 99/992 - loss 0.02323895 - time (sec): 8.59 - samples/sec: 1890.29 - lr: 0.000027 - momentum: 0.000000
|
415 |
+
2023-10-24 18:00:39,421 epoch 6 - iter 198/992 - loss 0.02299469 - time (sec): 17.02 - samples/sec: 1940.04 - lr: 0.000027 - momentum: 0.000000
|
416 |
+
2023-10-24 18:00:47,699 epoch 6 - iter 297/992 - loss 0.02440000 - time (sec): 25.30 - samples/sec: 1959.56 - lr: 0.000026 - momentum: 0.000000
|
417 |
+
2023-10-24 18:00:55,811 epoch 6 - iter 396/992 - loss 0.02517086 - time (sec): 33.41 - samples/sec: 1970.95 - lr: 0.000026 - momentum: 0.000000
|
418 |
+
2023-10-24 18:01:04,347 epoch 6 - iter 495/992 - loss 0.02699649 - time (sec): 41.95 - samples/sec: 1970.74 - lr: 0.000025 - momentum: 0.000000
|
419 |
+
2023-10-24 18:01:12,638 epoch 6 - iter 594/992 - loss 0.02691355 - time (sec): 50.24 - samples/sec: 1963.22 - lr: 0.000024 - momentum: 0.000000
|
420 |
+
2023-10-24 18:01:20,840 epoch 6 - iter 693/992 - loss 0.02767072 - time (sec): 58.44 - samples/sec: 1957.76 - lr: 0.000024 - momentum: 0.000000
|
421 |
+
2023-10-24 18:01:29,206 epoch 6 - iter 792/992 - loss 0.02671390 - time (sec): 66.81 - samples/sec: 1956.90 - lr: 0.000023 - momentum: 0.000000
|
422 |
+
2023-10-24 18:01:37,458 epoch 6 - iter 891/992 - loss 0.02828160 - time (sec): 75.06 - samples/sec: 1948.57 - lr: 0.000023 - momentum: 0.000000
|
423 |
+
2023-10-24 18:01:45,697 epoch 6 - iter 990/992 - loss 0.02810958 - time (sec): 83.30 - samples/sec: 1965.05 - lr: 0.000022 - momentum: 0.000000
|
424 |
+
2023-10-24 18:01:45,857 ----------------------------------------------------------------------------------------------------
|
425 |
+
2023-10-24 18:01:45,857 EPOCH 6 done: loss 0.0281 - lr: 0.000022
|
426 |
+
2023-10-24 18:01:48,981 DEV : loss 0.18152180314064026 - f1-score (micro avg) 0.7691
|
427 |
+
2023-10-24 18:01:48,996 saving best model
|
428 |
+
2023-10-24 18:01:49,629 ----------------------------------------------------------------------------------------------------
|
429 |
+
2023-10-24 18:01:58,369 epoch 7 - iter 99/992 - loss 0.02452345 - time (sec): 8.74 - samples/sec: 1920.30 - lr: 0.000022 - momentum: 0.000000
|
430 |
+
2023-10-24 18:02:06,462 epoch 7 - iter 198/992 - loss 0.02583170 - time (sec): 16.83 - samples/sec: 1928.62 - lr: 0.000021 - momentum: 0.000000
|
431 |
+
2023-10-24 18:02:15,105 epoch 7 - iter 297/992 - loss 0.02293195 - time (sec): 25.48 - samples/sec: 1913.00 - lr: 0.000021 - momentum: 0.000000
|
432 |
+
2023-10-24 18:02:23,523 epoch 7 - iter 396/992 - loss 0.01981722 - time (sec): 33.89 - samples/sec: 1901.12 - lr: 0.000020 - momentum: 0.000000
|
433 |
+
2023-10-24 18:02:31,697 epoch 7 - iter 495/992 - loss 0.01985616 - time (sec): 42.07 - samples/sec: 1910.50 - lr: 0.000019 - momentum: 0.000000
|
434 |
+
2023-10-24 18:02:40,392 epoch 7 - iter 594/992 - loss 0.01977100 - time (sec): 50.76 - samples/sec: 1926.84 - lr: 0.000019 - momentum: 0.000000
|
435 |
+
2023-10-24 18:02:48,921 epoch 7 - iter 693/992 - loss 0.02041123 - time (sec): 59.29 - samples/sec: 1935.23 - lr: 0.000018 - momentum: 0.000000
|
436 |
+
2023-10-24 18:02:57,131 epoch 7 - iter 792/992 - loss 0.02070652 - time (sec): 67.50 - samples/sec: 1941.00 - lr: 0.000018 - momentum: 0.000000
|
437 |
+
2023-10-24 18:03:05,223 epoch 7 - iter 891/992 - loss 0.02081829 - time (sec): 75.59 - samples/sec: 1949.40 - lr: 0.000017 - momentum: 0.000000
|
438 |
+
2023-10-24 18:03:13,362 epoch 7 - iter 990/992 - loss 0.02144692 - time (sec): 83.73 - samples/sec: 1952.78 - lr: 0.000017 - momentum: 0.000000
|
439 |
+
2023-10-24 18:03:13,536 ----------------------------------------------------------------------------------------------------
|
440 |
+
2023-10-24 18:03:13,536 EPOCH 7 done: loss 0.0214 - lr: 0.000017
|
441 |
+
2023-10-24 18:03:16,649 DEV : loss 0.18771061301231384 - f1-score (micro avg) 0.7667
|
442 |
+
2023-10-24 18:03:16,664 ----------------------------------------------------------------------------------------------------
|
443 |
+
2023-10-24 18:03:25,249 epoch 8 - iter 99/992 - loss 0.01897961 - time (sec): 8.58 - samples/sec: 2021.42 - lr: 0.000016 - momentum: 0.000000
|
444 |
+
2023-10-24 18:03:33,938 epoch 8 - iter 198/992 - loss 0.01571900 - time (sec): 17.27 - samples/sec: 1977.75 - lr: 0.000016 - momentum: 0.000000
|
445 |
+
2023-10-24 18:03:42,080 epoch 8 - iter 297/992 - loss 0.01464608 - time (sec): 25.41 - samples/sec: 1955.74 - lr: 0.000015 - momentum: 0.000000
|
446 |
+
2023-10-24 18:03:50,487 epoch 8 - iter 396/992 - loss 0.01451842 - time (sec): 33.82 - samples/sec: 1945.87 - lr: 0.000014 - momentum: 0.000000
|
447 |
+
2023-10-24 18:03:58,546 epoch 8 - iter 495/992 - loss 0.01464158 - time (sec): 41.88 - samples/sec: 1950.62 - lr: 0.000014 - momentum: 0.000000
|
448 |
+
2023-10-24 18:04:07,019 epoch 8 - iter 594/992 - loss 0.01494271 - time (sec): 50.35 - samples/sec: 1962.71 - lr: 0.000013 - momentum: 0.000000
|
449 |
+
2023-10-24 18:04:15,324 epoch 8 - iter 693/992 - loss 0.01427937 - time (sec): 58.66 - samples/sec: 1965.49 - lr: 0.000013 - momentum: 0.000000
|
450 |
+
2023-10-24 18:04:23,141 epoch 8 - iter 792/992 - loss 0.01444238 - time (sec): 66.48 - samples/sec: 1961.96 - lr: 0.000012 - momentum: 0.000000
|
451 |
+
2023-10-24 18:04:31,590 epoch 8 - iter 891/992 - loss 0.01470428 - time (sec): 74.93 - samples/sec: 1960.87 - lr: 0.000012 - momentum: 0.000000
|
452 |
+
2023-10-24 18:04:39,955 epoch 8 - iter 990/992 - loss 0.01468421 - time (sec): 83.29 - samples/sec: 1964.56 - lr: 0.000011 - momentum: 0.000000
|
453 |
+
2023-10-24 18:04:40,104 ----------------------------------------------------------------------------------------------------
|
454 |
+
2023-10-24 18:04:40,104 EPOCH 8 done: loss 0.0147 - lr: 0.000011
|
455 |
+
2023-10-24 18:04:43,222 DEV : loss 0.2224731296300888 - f1-score (micro avg) 0.7444
|
456 |
+
2023-10-24 18:04:43,237 ----------------------------------------------------------------------------------------------------
|
457 |
+
2023-10-24 18:04:51,724 epoch 9 - iter 99/992 - loss 0.01508641 - time (sec): 8.49 - samples/sec: 1869.36 - lr: 0.000011 - momentum: 0.000000
|
458 |
+
2023-10-24 18:04:59,936 epoch 9 - iter 198/992 - loss 0.01126348 - time (sec): 16.70 - samples/sec: 1893.49 - lr: 0.000010 - momentum: 0.000000
|
459 |
+
2023-10-24 18:05:08,057 epoch 9 - iter 297/992 - loss 0.01011817 - time (sec): 24.82 - samples/sec: 1903.84 - lr: 0.000009 - momentum: 0.000000
|
460 |
+
2023-10-24 18:05:17,194 epoch 9 - iter 396/992 - loss 0.01014998 - time (sec): 33.96 - samples/sec: 1904.20 - lr: 0.000009 - momentum: 0.000000
|
461 |
+
2023-10-24 18:05:25,870 epoch 9 - iter 495/992 - loss 0.00901112 - time (sec): 42.63 - samples/sec: 1918.22 - lr: 0.000008 - momentum: 0.000000
|
462 |
+
2023-10-24 18:05:34,447 epoch 9 - iter 594/992 - loss 0.00957614 - time (sec): 51.21 - samples/sec: 1921.71 - lr: 0.000008 - momentum: 0.000000
|
463 |
+
2023-10-24 18:05:42,470 epoch 9 - iter 693/992 - loss 0.00985237 - time (sec): 59.23 - samples/sec: 1932.18 - lr: 0.000007 - momentum: 0.000000
|
464 |
+
2023-10-24 18:05:50,719 epoch 9 - iter 792/992 - loss 0.00966421 - time (sec): 67.48 - samples/sec: 1935.77 - lr: 0.000007 - momentum: 0.000000
|
465 |
+
2023-10-24 18:05:58,741 epoch 9 - iter 891/992 - loss 0.00952795 - time (sec): 75.50 - samples/sec: 1944.93 - lr: 0.000006 - momentum: 0.000000
|
466 |
+
2023-10-24 18:06:06,945 epoch 9 - iter 990/992 - loss 0.00951350 - time (sec): 83.71 - samples/sec: 1955.66 - lr: 0.000006 - momentum: 0.000000
|
467 |
+
2023-10-24 18:06:07,091 ----------------------------------------------------------------------------------------------------
|
468 |
+
2023-10-24 18:06:07,092 EPOCH 9 done: loss 0.0095 - lr: 0.000006
|
469 |
+
2023-10-24 18:06:10,221 DEV : loss 0.2356439083814621 - f1-score (micro avg) 0.7551
|
470 |
+
2023-10-24 18:06:10,236 ----------------------------------------------------------------------------------------------------
|
471 |
+
2023-10-24 18:06:18,255 epoch 10 - iter 99/992 - loss 0.00471428 - time (sec): 8.02 - samples/sec: 2021.65 - lr: 0.000005 - momentum: 0.000000
|
472 |
+
2023-10-24 18:06:26,499 epoch 10 - iter 198/992 - loss 0.00492676 - time (sec): 16.26 - samples/sec: 1988.79 - lr: 0.000004 - momentum: 0.000000
|
473 |
+
2023-10-24 18:06:34,960 epoch 10 - iter 297/992 - loss 0.00537611 - time (sec): 24.72 - samples/sec: 1985.92 - lr: 0.000004 - momentum: 0.000000
|
474 |
+
2023-10-24 18:06:43,429 epoch 10 - iter 396/992 - loss 0.00591290 - time (sec): 33.19 - samples/sec: 1993.67 - lr: 0.000003 - momentum: 0.000000
|
475 |
+
2023-10-24 18:06:51,659 epoch 10 - iter 495/992 - loss 0.00619826 - time (sec): 41.42 - samples/sec: 1987.82 - lr: 0.000003 - momentum: 0.000000
|
476 |
+
2023-10-24 18:07:00,038 epoch 10 - iter 594/992 - loss 0.00579102 - time (sec): 49.80 - samples/sec: 1972.80 - lr: 0.000002 - momentum: 0.000000
|
477 |
+
2023-10-24 18:07:08,440 epoch 10 - iter 693/992 - loss 0.00584032 - time (sec): 58.20 - samples/sec: 1968.97 - lr: 0.000002 - momentum: 0.000000
|
478 |
+
2023-10-24 18:07:16,506 epoch 10 - iter 792/992 - loss 0.00552839 - time (sec): 66.27 - samples/sec: 1964.77 - lr: 0.000001 - momentum: 0.000000
|
479 |
+
2023-10-24 18:07:25,019 epoch 10 - iter 891/992 - loss 0.00572974 - time (sec): 74.78 - samples/sec: 1962.97 - lr: 0.000001 - momentum: 0.000000
|
480 |
+
2023-10-24 18:07:33,501 epoch 10 - iter 990/992 - loss 0.00560021 - time (sec): 83.26 - samples/sec: 1965.24 - lr: 0.000000 - momentum: 0.000000
|
481 |
+
2023-10-24 18:07:33,670 ----------------------------------------------------------------------------------------------------
|
482 |
+
2023-10-24 18:07:33,671 EPOCH 10 done: loss 0.0056 - lr: 0.000000
|
483 |
+
2023-10-24 18:07:36,792 DEV : loss 0.24207349121570587 - f1-score (micro avg) 0.7541
|
484 |
+
2023-10-24 18:07:37,277 ----------------------------------------------------------------------------------------------------
|
485 |
+
2023-10-24 18:07:37,277 Loading model from best epoch ...
|
486 |
+
2023-10-24 18:07:39,090 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG
|
487 |
+
2023-10-24 18:07:41,834
|
488 |
+
Results:
|
489 |
+
- F-score (micro) 0.7721
|
490 |
+
- F-score (macro) 0.6822
|
491 |
+
- Accuracy 0.6487
|
492 |
+
|
493 |
+
By class:
|
494 |
+
precision recall f1-score support
|
495 |
+
|
496 |
+
LOC 0.8067 0.8473 0.8265 655
|
497 |
+
PER 0.6980 0.7982 0.7448 223
|
498 |
+
ORG 0.6400 0.3780 0.4752 127
|
499 |
+
|
500 |
+
micro avg 0.7672 0.7771 0.7721 1005
|
501 |
+
macro avg 0.7149 0.6745 0.6822 1005
|
502 |
+
weighted avg 0.7615 0.7771 0.7640 1005
|
503 |
+
|
504 |
+
2023-10-24 18:07:41,834 ----------------------------------------------------------------------------------------------------
|