File size: 36,775 Bytes
be86170 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
2023-10-24 19:05:23,213 ----------------------------------------------------------------------------------------------------
2023-10-24 19:05:23,214 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(64001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(1): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(2): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(3): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(4): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(5): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(6): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(7): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(8): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(9): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(10): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(11): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=13, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-24 19:05:23,214 ----------------------------------------------------------------------------------------------------
2023-10-24 19:05:23,214 MultiCorpus: 7936 train + 992 dev + 992 test sentences
- NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /home/ubuntu/.flair/datasets/ner_icdar_europeana/fr
2023-10-24 19:05:23,214 ----------------------------------------------------------------------------------------------------
2023-10-24 19:05:23,214 Train: 7936 sentences
2023-10-24 19:05:23,214 (train_with_dev=False, train_with_test=False)
2023-10-24 19:05:23,214 ----------------------------------------------------------------------------------------------------
2023-10-24 19:05:23,214 Training Params:
2023-10-24 19:05:23,214 - learning_rate: "5e-05"
2023-10-24 19:05:23,214 - mini_batch_size: "8"
2023-10-24 19:05:23,215 - max_epochs: "10"
2023-10-24 19:05:23,215 - shuffle: "True"
2023-10-24 19:05:23,215 ----------------------------------------------------------------------------------------------------
2023-10-24 19:05:23,215 Plugins:
2023-10-24 19:05:23,215 - TensorboardLogger
2023-10-24 19:05:23,215 - LinearScheduler | warmup_fraction: '0.1'
2023-10-24 19:05:23,215 ----------------------------------------------------------------------------------------------------
2023-10-24 19:05:23,215 Final evaluation on model from best epoch (best-model.pt)
2023-10-24 19:05:23,215 - metric: "('micro avg', 'f1-score')"
2023-10-24 19:05:23,215 ----------------------------------------------------------------------------------------------------
2023-10-24 19:05:23,215 Computation:
2023-10-24 19:05:23,215 - compute on device: cuda:0
2023-10-24 19:05:23,215 - embedding storage: none
2023-10-24 19:05:23,215 ----------------------------------------------------------------------------------------------------
2023-10-24 19:05:23,215 Model training base path: "hmbench-icdar/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4"
2023-10-24 19:05:23,215 ----------------------------------------------------------------------------------------------------
2023-10-24 19:05:23,215 ----------------------------------------------------------------------------------------------------
2023-10-24 19:05:23,215 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-24 19:05:31,175 epoch 1 - iter 99/992 - loss 1.70950296 - time (sec): 7.96 - samples/sec: 2082.83 - lr: 0.000005 - momentum: 0.000000
2023-10-24 19:05:39,330 epoch 1 - iter 198/992 - loss 1.01384479 - time (sec): 16.11 - samples/sec: 2064.96 - lr: 0.000010 - momentum: 0.000000
2023-10-24 19:05:47,790 epoch 1 - iter 297/992 - loss 0.75778922 - time (sec): 24.57 - samples/sec: 1996.91 - lr: 0.000015 - momentum: 0.000000
2023-10-24 19:05:55,836 epoch 1 - iter 396/992 - loss 0.61189230 - time (sec): 32.62 - samples/sec: 1991.62 - lr: 0.000020 - momentum: 0.000000
2023-10-24 19:06:04,134 epoch 1 - iter 495/992 - loss 0.51884386 - time (sec): 40.92 - samples/sec: 1990.45 - lr: 0.000025 - momentum: 0.000000
2023-10-24 19:06:12,350 epoch 1 - iter 594/992 - loss 0.45856004 - time (sec): 49.13 - samples/sec: 1977.54 - lr: 0.000030 - momentum: 0.000000
2023-10-24 19:06:21,080 epoch 1 - iter 693/992 - loss 0.41271354 - time (sec): 57.86 - samples/sec: 1966.53 - lr: 0.000035 - momentum: 0.000000
2023-10-24 19:06:29,237 epoch 1 - iter 792/992 - loss 0.37655176 - time (sec): 66.02 - samples/sec: 1973.90 - lr: 0.000040 - momentum: 0.000000
2023-10-24 19:06:37,225 epoch 1 - iter 891/992 - loss 0.34959778 - time (sec): 74.01 - samples/sec: 1978.32 - lr: 0.000045 - momentum: 0.000000
2023-10-24 19:06:46,108 epoch 1 - iter 990/992 - loss 0.32534380 - time (sec): 82.89 - samples/sec: 1975.55 - lr: 0.000050 - momentum: 0.000000
2023-10-24 19:06:46,247 ----------------------------------------------------------------------------------------------------
2023-10-24 19:06:46,248 EPOCH 1 done: loss 0.3253 - lr: 0.000050
2023-10-24 19:06:49,320 DEV : loss 0.10130015760660172 - f1-score (micro avg) 0.6799
2023-10-24 19:06:49,335 saving best model
2023-10-24 19:06:49,808 ----------------------------------------------------------------------------------------------------
2023-10-24 19:06:58,310 epoch 2 - iter 99/992 - loss 0.10678352 - time (sec): 8.50 - samples/sec: 2028.19 - lr: 0.000049 - momentum: 0.000000
2023-10-24 19:07:06,731 epoch 2 - iter 198/992 - loss 0.10123782 - time (sec): 16.92 - samples/sec: 1993.53 - lr: 0.000049 - momentum: 0.000000
2023-10-24 19:07:14,788 epoch 2 - iter 297/992 - loss 0.09886519 - time (sec): 24.98 - samples/sec: 1996.00 - lr: 0.000048 - momentum: 0.000000
2023-10-24 19:07:23,057 epoch 2 - iter 396/992 - loss 0.10164530 - time (sec): 33.25 - samples/sec: 1994.28 - lr: 0.000048 - momentum: 0.000000
2023-10-24 19:07:31,670 epoch 2 - iter 495/992 - loss 0.10087299 - time (sec): 41.86 - samples/sec: 1992.96 - lr: 0.000047 - momentum: 0.000000
2023-10-24 19:07:40,135 epoch 2 - iter 594/992 - loss 0.10136669 - time (sec): 50.33 - samples/sec: 1981.49 - lr: 0.000047 - momentum: 0.000000
2023-10-24 19:07:48,052 epoch 2 - iter 693/992 - loss 0.10102277 - time (sec): 58.24 - samples/sec: 1974.27 - lr: 0.000046 - momentum: 0.000000
2023-10-24 19:07:56,239 epoch 2 - iter 792/992 - loss 0.10046863 - time (sec): 66.43 - samples/sec: 1969.35 - lr: 0.000046 - momentum: 0.000000
2023-10-24 19:08:04,561 epoch 2 - iter 891/992 - loss 0.09965890 - time (sec): 74.75 - samples/sec: 1974.95 - lr: 0.000045 - momentum: 0.000000
2023-10-24 19:08:12,651 epoch 2 - iter 990/992 - loss 0.09937356 - time (sec): 82.84 - samples/sec: 1969.96 - lr: 0.000044 - momentum: 0.000000
2023-10-24 19:08:13,107 ----------------------------------------------------------------------------------------------------
2023-10-24 19:08:13,107 EPOCH 2 done: loss 0.0995 - lr: 0.000044
2023-10-24 19:08:16,521 DEV : loss 0.0830492153763771 - f1-score (micro avg) 0.7227
2023-10-24 19:08:16,537 saving best model
2023-10-24 19:08:17,173 ----------------------------------------------------------------------------------------------------
2023-10-24 19:08:25,132 epoch 3 - iter 99/992 - loss 0.06256824 - time (sec): 7.96 - samples/sec: 2024.19 - lr: 0.000044 - momentum: 0.000000
2023-10-24 19:08:33,694 epoch 3 - iter 198/992 - loss 0.06110784 - time (sec): 16.52 - samples/sec: 2002.92 - lr: 0.000043 - momentum: 0.000000
2023-10-24 19:08:42,023 epoch 3 - iter 297/992 - loss 0.06752868 - time (sec): 24.85 - samples/sec: 1959.14 - lr: 0.000043 - momentum: 0.000000
2023-10-24 19:08:50,107 epoch 3 - iter 396/992 - loss 0.06822405 - time (sec): 32.93 - samples/sec: 1940.81 - lr: 0.000042 - momentum: 0.000000
2023-10-24 19:08:58,559 epoch 3 - iter 495/992 - loss 0.06716269 - time (sec): 41.39 - samples/sec: 1946.31 - lr: 0.000042 - momentum: 0.000000
2023-10-24 19:09:06,889 epoch 3 - iter 594/992 - loss 0.06703667 - time (sec): 49.72 - samples/sec: 1956.04 - lr: 0.000041 - momentum: 0.000000
2023-10-24 19:09:15,261 epoch 3 - iter 693/992 - loss 0.06724873 - time (sec): 58.09 - samples/sec: 1972.02 - lr: 0.000041 - momentum: 0.000000
2023-10-24 19:09:23,760 epoch 3 - iter 792/992 - loss 0.06798579 - time (sec): 66.59 - samples/sec: 1967.26 - lr: 0.000040 - momentum: 0.000000
2023-10-24 19:09:32,288 epoch 3 - iter 891/992 - loss 0.06874500 - time (sec): 75.11 - samples/sec: 1967.00 - lr: 0.000039 - momentum: 0.000000
2023-10-24 19:09:40,478 epoch 3 - iter 990/992 - loss 0.06831140 - time (sec): 83.30 - samples/sec: 1963.52 - lr: 0.000039 - momentum: 0.000000
2023-10-24 19:09:40,679 ----------------------------------------------------------------------------------------------------
2023-10-24 19:09:40,679 EPOCH 3 done: loss 0.0682 - lr: 0.000039
2023-10-24 19:09:43,796 DEV : loss 0.11285286396741867 - f1-score (micro avg) 0.7414
2023-10-24 19:09:43,812 saving best model
2023-10-24 19:09:44,464 ----------------------------------------------------------------------------------------------------
2023-10-24 19:09:52,525 epoch 4 - iter 99/992 - loss 0.03625260 - time (sec): 8.06 - samples/sec: 1924.31 - lr: 0.000038 - momentum: 0.000000
2023-10-24 19:10:01,030 epoch 4 - iter 198/992 - loss 0.04677937 - time (sec): 16.57 - samples/sec: 1953.03 - lr: 0.000038 - momentum: 0.000000
2023-10-24 19:10:09,422 epoch 4 - iter 297/992 - loss 0.04578826 - time (sec): 24.96 - samples/sec: 1983.09 - lr: 0.000037 - momentum: 0.000000
2023-10-24 19:10:17,505 epoch 4 - iter 396/992 - loss 0.04479099 - time (sec): 33.04 - samples/sec: 1961.58 - lr: 0.000037 - momentum: 0.000000
2023-10-24 19:10:25,630 epoch 4 - iter 495/992 - loss 0.04686146 - time (sec): 41.17 - samples/sec: 1954.14 - lr: 0.000036 - momentum: 0.000000
2023-10-24 19:10:34,259 epoch 4 - iter 594/992 - loss 0.04762399 - time (sec): 49.79 - samples/sec: 1960.97 - lr: 0.000036 - momentum: 0.000000
2023-10-24 19:10:42,614 epoch 4 - iter 693/992 - loss 0.04722873 - time (sec): 58.15 - samples/sec: 1957.15 - lr: 0.000035 - momentum: 0.000000
2023-10-24 19:10:51,075 epoch 4 - iter 792/992 - loss 0.04821478 - time (sec): 66.61 - samples/sec: 1951.82 - lr: 0.000034 - momentum: 0.000000
2023-10-24 19:10:59,484 epoch 4 - iter 891/992 - loss 0.04777276 - time (sec): 75.02 - samples/sec: 1963.79 - lr: 0.000034 - momentum: 0.000000
2023-10-24 19:11:08,254 epoch 4 - iter 990/992 - loss 0.04940618 - time (sec): 83.79 - samples/sec: 1952.77 - lr: 0.000033 - momentum: 0.000000
2023-10-24 19:11:08,452 ----------------------------------------------------------------------------------------------------
2023-10-24 19:11:08,452 EPOCH 4 done: loss 0.0493 - lr: 0.000033
2023-10-24 19:11:11,571 DEV : loss 0.11610622704029083 - f1-score (micro avg) 0.7619
2023-10-24 19:11:11,586 saving best model
2023-10-24 19:11:12,225 ----------------------------------------------------------------------------------------------------
2023-10-24 19:11:20,827 epoch 5 - iter 99/992 - loss 0.03961834 - time (sec): 8.60 - samples/sec: 1958.57 - lr: 0.000033 - momentum: 0.000000
2023-10-24 19:11:28,982 epoch 5 - iter 198/992 - loss 0.03534589 - time (sec): 16.76 - samples/sec: 1969.79 - lr: 0.000032 - momentum: 0.000000
2023-10-24 19:11:37,315 epoch 5 - iter 297/992 - loss 0.03749801 - time (sec): 25.09 - samples/sec: 1981.88 - lr: 0.000032 - momentum: 0.000000
2023-10-24 19:11:46,151 epoch 5 - iter 396/992 - loss 0.03528151 - time (sec): 33.93 - samples/sec: 1983.96 - lr: 0.000031 - momentum: 0.000000
2023-10-24 19:11:54,365 epoch 5 - iter 495/992 - loss 0.03519979 - time (sec): 42.14 - samples/sec: 1974.45 - lr: 0.000031 - momentum: 0.000000
2023-10-24 19:12:02,429 epoch 5 - iter 594/992 - loss 0.03550820 - time (sec): 50.20 - samples/sec: 1968.78 - lr: 0.000030 - momentum: 0.000000
2023-10-24 19:12:10,603 epoch 5 - iter 693/992 - loss 0.03597362 - time (sec): 58.38 - samples/sec: 1964.72 - lr: 0.000029 - momentum: 0.000000
2023-10-24 19:12:18,946 epoch 5 - iter 792/992 - loss 0.03569118 - time (sec): 66.72 - samples/sec: 1969.04 - lr: 0.000029 - momentum: 0.000000
2023-10-24 19:12:27,035 epoch 5 - iter 891/992 - loss 0.03582242 - time (sec): 74.81 - samples/sec: 1962.92 - lr: 0.000028 - momentum: 0.000000
2023-10-24 19:12:35,694 epoch 5 - iter 990/992 - loss 0.03556779 - time (sec): 83.47 - samples/sec: 1960.31 - lr: 0.000028 - momentum: 0.000000
2023-10-24 19:12:35,875 ----------------------------------------------------------------------------------------------------
2023-10-24 19:12:35,875 EPOCH 5 done: loss 0.0356 - lr: 0.000028
2023-10-24 19:12:38,999 DEV : loss 0.1716771423816681 - f1-score (micro avg) 0.7426
2023-10-24 19:12:39,014 ----------------------------------------------------------------------------------------------------
2023-10-24 19:12:47,355 epoch 6 - iter 99/992 - loss 0.03224386 - time (sec): 8.34 - samples/sec: 1942.30 - lr: 0.000027 - momentum: 0.000000
2023-10-24 19:12:55,447 epoch 6 - iter 198/992 - loss 0.03197562 - time (sec): 16.43 - samples/sec: 1959.18 - lr: 0.000027 - momentum: 0.000000
2023-10-24 19:13:03,799 epoch 6 - iter 297/992 - loss 0.02965185 - time (sec): 24.78 - samples/sec: 1979.69 - lr: 0.000026 - momentum: 0.000000
2023-10-24 19:13:11,914 epoch 6 - iter 396/992 - loss 0.03043814 - time (sec): 32.90 - samples/sec: 1967.10 - lr: 0.000026 - momentum: 0.000000
2023-10-24 19:13:20,509 epoch 6 - iter 495/992 - loss 0.02992723 - time (sec): 41.49 - samples/sec: 1974.57 - lr: 0.000025 - momentum: 0.000000
2023-10-24 19:13:28,982 epoch 6 - iter 594/992 - loss 0.02978050 - time (sec): 49.97 - samples/sec: 1954.97 - lr: 0.000024 - momentum: 0.000000
2023-10-24 19:13:37,482 epoch 6 - iter 693/992 - loss 0.02928196 - time (sec): 58.47 - samples/sec: 1959.29 - lr: 0.000024 - momentum: 0.000000
2023-10-24 19:13:45,576 epoch 6 - iter 792/992 - loss 0.02952635 - time (sec): 66.56 - samples/sec: 1960.59 - lr: 0.000023 - momentum: 0.000000
2023-10-24 19:13:54,224 epoch 6 - iter 891/992 - loss 0.02912377 - time (sec): 75.21 - samples/sec: 1950.02 - lr: 0.000023 - momentum: 0.000000
2023-10-24 19:14:02,690 epoch 6 - iter 990/992 - loss 0.02939295 - time (sec): 83.68 - samples/sec: 1956.57 - lr: 0.000022 - momentum: 0.000000
2023-10-24 19:14:02,850 ----------------------------------------------------------------------------------------------------
2023-10-24 19:14:02,850 EPOCH 6 done: loss 0.0294 - lr: 0.000022
2023-10-24 19:14:05,972 DEV : loss 0.192485511302948 - f1-score (micro avg) 0.7462
2023-10-24 19:14:05,987 ----------------------------------------------------------------------------------------------------
2023-10-24 19:14:14,813 epoch 7 - iter 99/992 - loss 0.02045973 - time (sec): 8.83 - samples/sec: 1989.11 - lr: 0.000022 - momentum: 0.000000
2023-10-24 19:14:23,135 epoch 7 - iter 198/992 - loss 0.01981631 - time (sec): 17.15 - samples/sec: 1998.22 - lr: 0.000021 - momentum: 0.000000
2023-10-24 19:14:31,271 epoch 7 - iter 297/992 - loss 0.01923823 - time (sec): 25.28 - samples/sec: 2001.59 - lr: 0.000021 - momentum: 0.000000
2023-10-24 19:14:39,735 epoch 7 - iter 396/992 - loss 0.02020709 - time (sec): 33.75 - samples/sec: 1983.61 - lr: 0.000020 - momentum: 0.000000
2023-10-24 19:14:47,975 epoch 7 - iter 495/992 - loss 0.02153825 - time (sec): 41.99 - samples/sec: 1978.07 - lr: 0.000019 - momentum: 0.000000
2023-10-24 19:14:56,108 epoch 7 - iter 594/992 - loss 0.02042658 - time (sec): 50.12 - samples/sec: 1972.49 - lr: 0.000019 - momentum: 0.000000
2023-10-24 19:15:04,294 epoch 7 - iter 693/992 - loss 0.02067326 - time (sec): 58.31 - samples/sec: 1965.88 - lr: 0.000018 - momentum: 0.000000
2023-10-24 19:15:12,571 epoch 7 - iter 792/992 - loss 0.02092512 - time (sec): 66.58 - samples/sec: 1965.47 - lr: 0.000018 - momentum: 0.000000
2023-10-24 19:15:20,891 epoch 7 - iter 891/992 - loss 0.02067809 - time (sec): 74.90 - samples/sec: 1968.70 - lr: 0.000017 - momentum: 0.000000
2023-10-24 19:15:29,114 epoch 7 - iter 990/992 - loss 0.02076980 - time (sec): 83.13 - samples/sec: 1968.12 - lr: 0.000017 - momentum: 0.000000
2023-10-24 19:15:29,378 ----------------------------------------------------------------------------------------------------
2023-10-24 19:15:29,378 EPOCH 7 done: loss 0.0208 - lr: 0.000017
2023-10-24 19:15:32,489 DEV : loss 0.21390925347805023 - f1-score (micro avg) 0.7568
2023-10-24 19:15:32,504 ----------------------------------------------------------------------------------------------------
2023-10-24 19:15:40,895 epoch 8 - iter 99/992 - loss 0.01235834 - time (sec): 8.39 - samples/sec: 1954.00 - lr: 0.000016 - momentum: 0.000000
2023-10-24 19:15:49,494 epoch 8 - iter 198/992 - loss 0.01284679 - time (sec): 16.99 - samples/sec: 1975.32 - lr: 0.000016 - momentum: 0.000000
2023-10-24 19:15:57,663 epoch 8 - iter 297/992 - loss 0.01202123 - time (sec): 25.16 - samples/sec: 1980.96 - lr: 0.000015 - momentum: 0.000000
2023-10-24 19:16:05,831 epoch 8 - iter 396/992 - loss 0.01338066 - time (sec): 33.33 - samples/sec: 1985.64 - lr: 0.000014 - momentum: 0.000000
2023-10-24 19:16:14,383 epoch 8 - iter 495/992 - loss 0.01427779 - time (sec): 41.88 - samples/sec: 1991.53 - lr: 0.000014 - momentum: 0.000000
2023-10-24 19:16:22,512 epoch 8 - iter 594/992 - loss 0.01426704 - time (sec): 50.01 - samples/sec: 1990.06 - lr: 0.000013 - momentum: 0.000000
2023-10-24 19:16:31,092 epoch 8 - iter 693/992 - loss 0.01503984 - time (sec): 58.59 - samples/sec: 1974.64 - lr: 0.000013 - momentum: 0.000000
2023-10-24 19:16:39,618 epoch 8 - iter 792/992 - loss 0.01476754 - time (sec): 67.11 - samples/sec: 1956.26 - lr: 0.000012 - momentum: 0.000000
2023-10-24 19:16:48,166 epoch 8 - iter 891/992 - loss 0.01433965 - time (sec): 75.66 - samples/sec: 1958.05 - lr: 0.000012 - momentum: 0.000000
2023-10-24 19:16:56,116 epoch 8 - iter 990/992 - loss 0.01439873 - time (sec): 83.61 - samples/sec: 1957.13 - lr: 0.000011 - momentum: 0.000000
2023-10-24 19:16:56,266 ----------------------------------------------------------------------------------------------------
2023-10-24 19:16:56,266 EPOCH 8 done: loss 0.0144 - lr: 0.000011
2023-10-24 19:16:59,394 DEV : loss 0.2170470654964447 - f1-score (micro avg) 0.7653
2023-10-24 19:16:59,409 saving best model
2023-10-24 19:16:59,998 ----------------------------------------------------------------------------------------------------
2023-10-24 19:17:08,452 epoch 9 - iter 99/992 - loss 0.01523691 - time (sec): 8.45 - samples/sec: 1956.81 - lr: 0.000011 - momentum: 0.000000
2023-10-24 19:17:16,335 epoch 9 - iter 198/992 - loss 0.01371175 - time (sec): 16.34 - samples/sec: 1973.01 - lr: 0.000010 - momentum: 0.000000
2023-10-24 19:17:25,129 epoch 9 - iter 297/992 - loss 0.01112734 - time (sec): 25.13 - samples/sec: 1961.09 - lr: 0.000009 - momentum: 0.000000
2023-10-24 19:17:33,617 epoch 9 - iter 396/992 - loss 0.01101364 - time (sec): 33.62 - samples/sec: 1954.71 - lr: 0.000009 - momentum: 0.000000
2023-10-24 19:17:41,740 epoch 9 - iter 495/992 - loss 0.01020473 - time (sec): 41.74 - samples/sec: 1971.57 - lr: 0.000008 - momentum: 0.000000
2023-10-24 19:17:49,783 epoch 9 - iter 594/992 - loss 0.00941962 - time (sec): 49.78 - samples/sec: 1965.69 - lr: 0.000008 - momentum: 0.000000
2023-10-24 19:17:58,224 epoch 9 - iter 693/992 - loss 0.00898993 - time (sec): 58.23 - samples/sec: 1968.14 - lr: 0.000007 - momentum: 0.000000
2023-10-24 19:18:06,525 epoch 9 - iter 792/992 - loss 0.00910924 - time (sec): 66.53 - samples/sec: 1970.28 - lr: 0.000007 - momentum: 0.000000
2023-10-24 19:18:15,185 epoch 9 - iter 891/992 - loss 0.00928332 - time (sec): 75.19 - samples/sec: 1961.67 - lr: 0.000006 - momentum: 0.000000
2023-10-24 19:18:23,413 epoch 9 - iter 990/992 - loss 0.00916308 - time (sec): 83.41 - samples/sec: 1962.06 - lr: 0.000006 - momentum: 0.000000
2023-10-24 19:18:23,585 ----------------------------------------------------------------------------------------------------
2023-10-24 19:18:23,585 EPOCH 9 done: loss 0.0092 - lr: 0.000006
2023-10-24 19:18:26,698 DEV : loss 0.2309696227312088 - f1-score (micro avg) 0.761
2023-10-24 19:18:26,713 ----------------------------------------------------------------------------------------------------
2023-10-24 19:18:34,965 epoch 10 - iter 99/992 - loss 0.00331234 - time (sec): 8.25 - samples/sec: 1929.01 - lr: 0.000005 - momentum: 0.000000
2023-10-24 19:18:43,239 epoch 10 - iter 198/992 - loss 0.00499297 - time (sec): 16.52 - samples/sec: 1982.26 - lr: 0.000004 - momentum: 0.000000
2023-10-24 19:18:51,539 epoch 10 - iter 297/992 - loss 0.00567139 - time (sec): 24.82 - samples/sec: 1956.99 - lr: 0.000004 - momentum: 0.000000
2023-10-24 19:18:59,907 epoch 10 - iter 396/992 - loss 0.00588887 - time (sec): 33.19 - samples/sec: 1963.07 - lr: 0.000003 - momentum: 0.000000
2023-10-24 19:19:08,519 epoch 10 - iter 495/992 - loss 0.00578750 - time (sec): 41.80 - samples/sec: 1954.56 - lr: 0.000003 - momentum: 0.000000
2023-10-24 19:19:17,405 epoch 10 - iter 594/992 - loss 0.00603662 - time (sec): 50.69 - samples/sec: 1943.26 - lr: 0.000002 - momentum: 0.000000
2023-10-24 19:19:25,492 epoch 10 - iter 693/992 - loss 0.00581652 - time (sec): 58.78 - samples/sec: 1950.26 - lr: 0.000002 - momentum: 0.000000
2023-10-24 19:19:33,597 epoch 10 - iter 792/992 - loss 0.00565761 - time (sec): 66.88 - samples/sec: 1952.72 - lr: 0.000001 - momentum: 0.000000
2023-10-24 19:19:42,061 epoch 10 - iter 891/992 - loss 0.00628280 - time (sec): 75.35 - samples/sec: 1961.00 - lr: 0.000001 - momentum: 0.000000
2023-10-24 19:19:50,323 epoch 10 - iter 990/992 - loss 0.00648941 - time (sec): 83.61 - samples/sec: 1958.09 - lr: 0.000000 - momentum: 0.000000
2023-10-24 19:19:50,484 ----------------------------------------------------------------------------------------------------
2023-10-24 19:19:50,484 EPOCH 10 done: loss 0.0065 - lr: 0.000000
2023-10-24 19:19:53,602 DEV : loss 0.24162988364696503 - f1-score (micro avg) 0.7665
2023-10-24 19:19:53,617 saving best model
2023-10-24 19:19:54,685 ----------------------------------------------------------------------------------------------------
2023-10-24 19:19:54,686 Loading model from best epoch ...
2023-10-24 19:19:56,216 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG
2023-10-24 19:19:59,296
Results:
- F-score (micro) 0.7905
- F-score (macro) 0.6954
- Accuracy 0.6762
By class:
precision recall f1-score support
LOC 0.8430 0.8687 0.8556 655
PER 0.7020 0.8027 0.7490 223
ORG 0.5843 0.4094 0.4815 127
micro avg 0.7851 0.7960 0.7905 1005
macro avg 0.7097 0.6936 0.6954 1005
weighted avg 0.7790 0.7960 0.7847 1005
2023-10-24 19:19:59,296 ----------------------------------------------------------------------------------------------------
|