2023-10-24 19:05:23,213 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:05:23,214 Model: "SequenceTagger( (embeddings): TransformerWordEmbeddings( (model): BertModel( (embeddings): BertEmbeddings( (word_embeddings): Embedding(64001, 768) (position_embeddings): Embedding(512, 768) (token_type_embeddings): Embedding(2, 768) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): BertEncoder( (layer): ModuleList( (0): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (1): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (2): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (3): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (4): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (5): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (6): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (7): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (8): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (9): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (10): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (11): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (pooler): BertPooler( (dense): Linear(in_features=768, out_features=768, bias=True) (activation): Tanh() ) ) ) (locked_dropout): LockedDropout(p=0.5) (linear): Linear(in_features=768, out_features=13, bias=True) (loss_function): CrossEntropyLoss() )" 2023-10-24 19:05:23,214 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:05:23,214 MultiCorpus: 7936 train + 992 dev + 992 test sentences - NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /home/ubuntu/.flair/datasets/ner_icdar_europeana/fr 2023-10-24 19:05:23,214 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:05:23,214 Train: 7936 sentences 2023-10-24 19:05:23,214 (train_with_dev=False, train_with_test=False) 2023-10-24 19:05:23,214 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:05:23,214 Training Params: 2023-10-24 19:05:23,214 - learning_rate: "5e-05" 2023-10-24 19:05:23,214 - mini_batch_size: "8" 2023-10-24 19:05:23,215 - max_epochs: "10" 2023-10-24 19:05:23,215 - shuffle: "True" 2023-10-24 19:05:23,215 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:05:23,215 Plugins: 2023-10-24 19:05:23,215 - TensorboardLogger 2023-10-24 19:05:23,215 - LinearScheduler | warmup_fraction: '0.1' 2023-10-24 19:05:23,215 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:05:23,215 Final evaluation on model from best epoch (best-model.pt) 2023-10-24 19:05:23,215 - metric: "('micro avg', 'f1-score')" 2023-10-24 19:05:23,215 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:05:23,215 Computation: 2023-10-24 19:05:23,215 - compute on device: cuda:0 2023-10-24 19:05:23,215 - embedding storage: none 2023-10-24 19:05:23,215 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:05:23,215 Model training base path: "hmbench-icdar/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4" 2023-10-24 19:05:23,215 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:05:23,215 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:05:23,215 Logging anything other than scalars to TensorBoard is currently not supported. 2023-10-24 19:05:31,175 epoch 1 - iter 99/992 - loss 1.70950296 - time (sec): 7.96 - samples/sec: 2082.83 - lr: 0.000005 - momentum: 0.000000 2023-10-24 19:05:39,330 epoch 1 - iter 198/992 - loss 1.01384479 - time (sec): 16.11 - samples/sec: 2064.96 - lr: 0.000010 - momentum: 0.000000 2023-10-24 19:05:47,790 epoch 1 - iter 297/992 - loss 0.75778922 - time (sec): 24.57 - samples/sec: 1996.91 - lr: 0.000015 - momentum: 0.000000 2023-10-24 19:05:55,836 epoch 1 - iter 396/992 - loss 0.61189230 - time (sec): 32.62 - samples/sec: 1991.62 - lr: 0.000020 - momentum: 0.000000 2023-10-24 19:06:04,134 epoch 1 - iter 495/992 - loss 0.51884386 - time (sec): 40.92 - samples/sec: 1990.45 - lr: 0.000025 - momentum: 0.000000 2023-10-24 19:06:12,350 epoch 1 - iter 594/992 - loss 0.45856004 - time (sec): 49.13 - samples/sec: 1977.54 - lr: 0.000030 - momentum: 0.000000 2023-10-24 19:06:21,080 epoch 1 - iter 693/992 - loss 0.41271354 - time (sec): 57.86 - samples/sec: 1966.53 - lr: 0.000035 - momentum: 0.000000 2023-10-24 19:06:29,237 epoch 1 - iter 792/992 - loss 0.37655176 - time (sec): 66.02 - samples/sec: 1973.90 - lr: 0.000040 - momentum: 0.000000 2023-10-24 19:06:37,225 epoch 1 - iter 891/992 - loss 0.34959778 - time (sec): 74.01 - samples/sec: 1978.32 - lr: 0.000045 - momentum: 0.000000 2023-10-24 19:06:46,108 epoch 1 - iter 990/992 - loss 0.32534380 - time (sec): 82.89 - samples/sec: 1975.55 - lr: 0.000050 - momentum: 0.000000 2023-10-24 19:06:46,247 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:06:46,248 EPOCH 1 done: loss 0.3253 - lr: 0.000050 2023-10-24 19:06:49,320 DEV : loss 0.10130015760660172 - f1-score (micro avg) 0.6799 2023-10-24 19:06:49,335 saving best model 2023-10-24 19:06:49,808 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:06:58,310 epoch 2 - iter 99/992 - loss 0.10678352 - time (sec): 8.50 - samples/sec: 2028.19 - lr: 0.000049 - momentum: 0.000000 2023-10-24 19:07:06,731 epoch 2 - iter 198/992 - loss 0.10123782 - time (sec): 16.92 - samples/sec: 1993.53 - lr: 0.000049 - momentum: 0.000000 2023-10-24 19:07:14,788 epoch 2 - iter 297/992 - loss 0.09886519 - time (sec): 24.98 - samples/sec: 1996.00 - lr: 0.000048 - momentum: 0.000000 2023-10-24 19:07:23,057 epoch 2 - iter 396/992 - loss 0.10164530 - time (sec): 33.25 - samples/sec: 1994.28 - lr: 0.000048 - momentum: 0.000000 2023-10-24 19:07:31,670 epoch 2 - iter 495/992 - loss 0.10087299 - time (sec): 41.86 - samples/sec: 1992.96 - lr: 0.000047 - momentum: 0.000000 2023-10-24 19:07:40,135 epoch 2 - iter 594/992 - loss 0.10136669 - time (sec): 50.33 - samples/sec: 1981.49 - lr: 0.000047 - momentum: 0.000000 2023-10-24 19:07:48,052 epoch 2 - iter 693/992 - loss 0.10102277 - time (sec): 58.24 - samples/sec: 1974.27 - lr: 0.000046 - momentum: 0.000000 2023-10-24 19:07:56,239 epoch 2 - iter 792/992 - loss 0.10046863 - time (sec): 66.43 - samples/sec: 1969.35 - lr: 0.000046 - momentum: 0.000000 2023-10-24 19:08:04,561 epoch 2 - iter 891/992 - loss 0.09965890 - time (sec): 74.75 - samples/sec: 1974.95 - lr: 0.000045 - momentum: 0.000000 2023-10-24 19:08:12,651 epoch 2 - iter 990/992 - loss 0.09937356 - time (sec): 82.84 - samples/sec: 1969.96 - lr: 0.000044 - momentum: 0.000000 2023-10-24 19:08:13,107 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:08:13,107 EPOCH 2 done: loss 0.0995 - lr: 0.000044 2023-10-24 19:08:16,521 DEV : loss 0.0830492153763771 - f1-score (micro avg) 0.7227 2023-10-24 19:08:16,537 saving best model 2023-10-24 19:08:17,173 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:08:25,132 epoch 3 - iter 99/992 - loss 0.06256824 - time (sec): 7.96 - samples/sec: 2024.19 - lr: 0.000044 - momentum: 0.000000 2023-10-24 19:08:33,694 epoch 3 - iter 198/992 - loss 0.06110784 - time (sec): 16.52 - samples/sec: 2002.92 - lr: 0.000043 - momentum: 0.000000 2023-10-24 19:08:42,023 epoch 3 - iter 297/992 - loss 0.06752868 - time (sec): 24.85 - samples/sec: 1959.14 - lr: 0.000043 - momentum: 0.000000 2023-10-24 19:08:50,107 epoch 3 - iter 396/992 - loss 0.06822405 - time (sec): 32.93 - samples/sec: 1940.81 - lr: 0.000042 - momentum: 0.000000 2023-10-24 19:08:58,559 epoch 3 - iter 495/992 - loss 0.06716269 - time (sec): 41.39 - samples/sec: 1946.31 - lr: 0.000042 - momentum: 0.000000 2023-10-24 19:09:06,889 epoch 3 - iter 594/992 - loss 0.06703667 - time (sec): 49.72 - samples/sec: 1956.04 - lr: 0.000041 - momentum: 0.000000 2023-10-24 19:09:15,261 epoch 3 - iter 693/992 - loss 0.06724873 - time (sec): 58.09 - samples/sec: 1972.02 - lr: 0.000041 - momentum: 0.000000 2023-10-24 19:09:23,760 epoch 3 - iter 792/992 - loss 0.06798579 - time (sec): 66.59 - samples/sec: 1967.26 - lr: 0.000040 - momentum: 0.000000 2023-10-24 19:09:32,288 epoch 3 - iter 891/992 - loss 0.06874500 - time (sec): 75.11 - samples/sec: 1967.00 - lr: 0.000039 - momentum: 0.000000 2023-10-24 19:09:40,478 epoch 3 - iter 990/992 - loss 0.06831140 - time (sec): 83.30 - samples/sec: 1963.52 - lr: 0.000039 - momentum: 0.000000 2023-10-24 19:09:40,679 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:09:40,679 EPOCH 3 done: loss 0.0682 - lr: 0.000039 2023-10-24 19:09:43,796 DEV : loss 0.11285286396741867 - f1-score (micro avg) 0.7414 2023-10-24 19:09:43,812 saving best model 2023-10-24 19:09:44,464 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:09:52,525 epoch 4 - iter 99/992 - loss 0.03625260 - time (sec): 8.06 - samples/sec: 1924.31 - lr: 0.000038 - momentum: 0.000000 2023-10-24 19:10:01,030 epoch 4 - iter 198/992 - loss 0.04677937 - time (sec): 16.57 - samples/sec: 1953.03 - lr: 0.000038 - momentum: 0.000000 2023-10-24 19:10:09,422 epoch 4 - iter 297/992 - loss 0.04578826 - time (sec): 24.96 - samples/sec: 1983.09 - lr: 0.000037 - momentum: 0.000000 2023-10-24 19:10:17,505 epoch 4 - iter 396/992 - loss 0.04479099 - time (sec): 33.04 - samples/sec: 1961.58 - lr: 0.000037 - momentum: 0.000000 2023-10-24 19:10:25,630 epoch 4 - iter 495/992 - loss 0.04686146 - time (sec): 41.17 - samples/sec: 1954.14 - lr: 0.000036 - momentum: 0.000000 2023-10-24 19:10:34,259 epoch 4 - iter 594/992 - loss 0.04762399 - time (sec): 49.79 - samples/sec: 1960.97 - lr: 0.000036 - momentum: 0.000000 2023-10-24 19:10:42,614 epoch 4 - iter 693/992 - loss 0.04722873 - time (sec): 58.15 - samples/sec: 1957.15 - lr: 0.000035 - momentum: 0.000000 2023-10-24 19:10:51,075 epoch 4 - iter 792/992 - loss 0.04821478 - time (sec): 66.61 - samples/sec: 1951.82 - lr: 0.000034 - momentum: 0.000000 2023-10-24 19:10:59,484 epoch 4 - iter 891/992 - loss 0.04777276 - time (sec): 75.02 - samples/sec: 1963.79 - lr: 0.000034 - momentum: 0.000000 2023-10-24 19:11:08,254 epoch 4 - iter 990/992 - loss 0.04940618 - time (sec): 83.79 - samples/sec: 1952.77 - lr: 0.000033 - momentum: 0.000000 2023-10-24 19:11:08,452 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:11:08,452 EPOCH 4 done: loss 0.0493 - lr: 0.000033 2023-10-24 19:11:11,571 DEV : loss 0.11610622704029083 - f1-score (micro avg) 0.7619 2023-10-24 19:11:11,586 saving best model 2023-10-24 19:11:12,225 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:11:20,827 epoch 5 - iter 99/992 - loss 0.03961834 - time (sec): 8.60 - samples/sec: 1958.57 - lr: 0.000033 - momentum: 0.000000 2023-10-24 19:11:28,982 epoch 5 - iter 198/992 - loss 0.03534589 - time (sec): 16.76 - samples/sec: 1969.79 - lr: 0.000032 - momentum: 0.000000 2023-10-24 19:11:37,315 epoch 5 - iter 297/992 - loss 0.03749801 - time (sec): 25.09 - samples/sec: 1981.88 - lr: 0.000032 - momentum: 0.000000 2023-10-24 19:11:46,151 epoch 5 - iter 396/992 - loss 0.03528151 - time (sec): 33.93 - samples/sec: 1983.96 - lr: 0.000031 - momentum: 0.000000 2023-10-24 19:11:54,365 epoch 5 - iter 495/992 - loss 0.03519979 - time (sec): 42.14 - samples/sec: 1974.45 - lr: 0.000031 - momentum: 0.000000 2023-10-24 19:12:02,429 epoch 5 - iter 594/992 - loss 0.03550820 - time (sec): 50.20 - samples/sec: 1968.78 - lr: 0.000030 - momentum: 0.000000 2023-10-24 19:12:10,603 epoch 5 - iter 693/992 - loss 0.03597362 - time (sec): 58.38 - samples/sec: 1964.72 - lr: 0.000029 - momentum: 0.000000 2023-10-24 19:12:18,946 epoch 5 - iter 792/992 - loss 0.03569118 - time (sec): 66.72 - samples/sec: 1969.04 - lr: 0.000029 - momentum: 0.000000 2023-10-24 19:12:27,035 epoch 5 - iter 891/992 - loss 0.03582242 - time (sec): 74.81 - samples/sec: 1962.92 - lr: 0.000028 - momentum: 0.000000 2023-10-24 19:12:35,694 epoch 5 - iter 990/992 - loss 0.03556779 - time (sec): 83.47 - samples/sec: 1960.31 - lr: 0.000028 - momentum: 0.000000 2023-10-24 19:12:35,875 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:12:35,875 EPOCH 5 done: loss 0.0356 - lr: 0.000028 2023-10-24 19:12:38,999 DEV : loss 0.1716771423816681 - f1-score (micro avg) 0.7426 2023-10-24 19:12:39,014 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:12:47,355 epoch 6 - iter 99/992 - loss 0.03224386 - time (sec): 8.34 - samples/sec: 1942.30 - lr: 0.000027 - momentum: 0.000000 2023-10-24 19:12:55,447 epoch 6 - iter 198/992 - loss 0.03197562 - time (sec): 16.43 - samples/sec: 1959.18 - lr: 0.000027 - momentum: 0.000000 2023-10-24 19:13:03,799 epoch 6 - iter 297/992 - loss 0.02965185 - time (sec): 24.78 - samples/sec: 1979.69 - lr: 0.000026 - momentum: 0.000000 2023-10-24 19:13:11,914 epoch 6 - iter 396/992 - loss 0.03043814 - time (sec): 32.90 - samples/sec: 1967.10 - lr: 0.000026 - momentum: 0.000000 2023-10-24 19:13:20,509 epoch 6 - iter 495/992 - loss 0.02992723 - time (sec): 41.49 - samples/sec: 1974.57 - lr: 0.000025 - momentum: 0.000000 2023-10-24 19:13:28,982 epoch 6 - iter 594/992 - loss 0.02978050 - time (sec): 49.97 - samples/sec: 1954.97 - lr: 0.000024 - momentum: 0.000000 2023-10-24 19:13:37,482 epoch 6 - iter 693/992 - loss 0.02928196 - time (sec): 58.47 - samples/sec: 1959.29 - lr: 0.000024 - momentum: 0.000000 2023-10-24 19:13:45,576 epoch 6 - iter 792/992 - loss 0.02952635 - time (sec): 66.56 - samples/sec: 1960.59 - lr: 0.000023 - momentum: 0.000000 2023-10-24 19:13:54,224 epoch 6 - iter 891/992 - loss 0.02912377 - time (sec): 75.21 - samples/sec: 1950.02 - lr: 0.000023 - momentum: 0.000000 2023-10-24 19:14:02,690 epoch 6 - iter 990/992 - loss 0.02939295 - time (sec): 83.68 - samples/sec: 1956.57 - lr: 0.000022 - momentum: 0.000000 2023-10-24 19:14:02,850 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:14:02,850 EPOCH 6 done: loss 0.0294 - lr: 0.000022 2023-10-24 19:14:05,972 DEV : loss 0.192485511302948 - f1-score (micro avg) 0.7462 2023-10-24 19:14:05,987 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:14:14,813 epoch 7 - iter 99/992 - loss 0.02045973 - time (sec): 8.83 - samples/sec: 1989.11 - lr: 0.000022 - momentum: 0.000000 2023-10-24 19:14:23,135 epoch 7 - iter 198/992 - loss 0.01981631 - time (sec): 17.15 - samples/sec: 1998.22 - lr: 0.000021 - momentum: 0.000000 2023-10-24 19:14:31,271 epoch 7 - iter 297/992 - loss 0.01923823 - time (sec): 25.28 - samples/sec: 2001.59 - lr: 0.000021 - momentum: 0.000000 2023-10-24 19:14:39,735 epoch 7 - iter 396/992 - loss 0.02020709 - time (sec): 33.75 - samples/sec: 1983.61 - lr: 0.000020 - momentum: 0.000000 2023-10-24 19:14:47,975 epoch 7 - iter 495/992 - loss 0.02153825 - time (sec): 41.99 - samples/sec: 1978.07 - lr: 0.000019 - momentum: 0.000000 2023-10-24 19:14:56,108 epoch 7 - iter 594/992 - loss 0.02042658 - time (sec): 50.12 - samples/sec: 1972.49 - lr: 0.000019 - momentum: 0.000000 2023-10-24 19:15:04,294 epoch 7 - iter 693/992 - loss 0.02067326 - time (sec): 58.31 - samples/sec: 1965.88 - lr: 0.000018 - momentum: 0.000000 2023-10-24 19:15:12,571 epoch 7 - iter 792/992 - loss 0.02092512 - time (sec): 66.58 - samples/sec: 1965.47 - lr: 0.000018 - momentum: 0.000000 2023-10-24 19:15:20,891 epoch 7 - iter 891/992 - loss 0.02067809 - time (sec): 74.90 - samples/sec: 1968.70 - lr: 0.000017 - momentum: 0.000000 2023-10-24 19:15:29,114 epoch 7 - iter 990/992 - loss 0.02076980 - time (sec): 83.13 - samples/sec: 1968.12 - lr: 0.000017 - momentum: 0.000000 2023-10-24 19:15:29,378 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:15:29,378 EPOCH 7 done: loss 0.0208 - lr: 0.000017 2023-10-24 19:15:32,489 DEV : loss 0.21390925347805023 - f1-score (micro avg) 0.7568 2023-10-24 19:15:32,504 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:15:40,895 epoch 8 - iter 99/992 - loss 0.01235834 - time (sec): 8.39 - samples/sec: 1954.00 - lr: 0.000016 - momentum: 0.000000 2023-10-24 19:15:49,494 epoch 8 - iter 198/992 - loss 0.01284679 - time (sec): 16.99 - samples/sec: 1975.32 - lr: 0.000016 - momentum: 0.000000 2023-10-24 19:15:57,663 epoch 8 - iter 297/992 - loss 0.01202123 - time (sec): 25.16 - samples/sec: 1980.96 - lr: 0.000015 - momentum: 0.000000 2023-10-24 19:16:05,831 epoch 8 - iter 396/992 - loss 0.01338066 - time (sec): 33.33 - samples/sec: 1985.64 - lr: 0.000014 - momentum: 0.000000 2023-10-24 19:16:14,383 epoch 8 - iter 495/992 - loss 0.01427779 - time (sec): 41.88 - samples/sec: 1991.53 - lr: 0.000014 - momentum: 0.000000 2023-10-24 19:16:22,512 epoch 8 - iter 594/992 - loss 0.01426704 - time (sec): 50.01 - samples/sec: 1990.06 - lr: 0.000013 - momentum: 0.000000 2023-10-24 19:16:31,092 epoch 8 - iter 693/992 - loss 0.01503984 - time (sec): 58.59 - samples/sec: 1974.64 - lr: 0.000013 - momentum: 0.000000 2023-10-24 19:16:39,618 epoch 8 - iter 792/992 - loss 0.01476754 - time (sec): 67.11 - samples/sec: 1956.26 - lr: 0.000012 - momentum: 0.000000 2023-10-24 19:16:48,166 epoch 8 - iter 891/992 - loss 0.01433965 - time (sec): 75.66 - samples/sec: 1958.05 - lr: 0.000012 - momentum: 0.000000 2023-10-24 19:16:56,116 epoch 8 - iter 990/992 - loss 0.01439873 - time (sec): 83.61 - samples/sec: 1957.13 - lr: 0.000011 - momentum: 0.000000 2023-10-24 19:16:56,266 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:16:56,266 EPOCH 8 done: loss 0.0144 - lr: 0.000011 2023-10-24 19:16:59,394 DEV : loss 0.2170470654964447 - f1-score (micro avg) 0.7653 2023-10-24 19:16:59,409 saving best model 2023-10-24 19:16:59,998 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:17:08,452 epoch 9 - iter 99/992 - loss 0.01523691 - time (sec): 8.45 - samples/sec: 1956.81 - lr: 0.000011 - momentum: 0.000000 2023-10-24 19:17:16,335 epoch 9 - iter 198/992 - loss 0.01371175 - time (sec): 16.34 - samples/sec: 1973.01 - lr: 0.000010 - momentum: 0.000000 2023-10-24 19:17:25,129 epoch 9 - iter 297/992 - loss 0.01112734 - time (sec): 25.13 - samples/sec: 1961.09 - lr: 0.000009 - momentum: 0.000000 2023-10-24 19:17:33,617 epoch 9 - iter 396/992 - loss 0.01101364 - time (sec): 33.62 - samples/sec: 1954.71 - lr: 0.000009 - momentum: 0.000000 2023-10-24 19:17:41,740 epoch 9 - iter 495/992 - loss 0.01020473 - time (sec): 41.74 - samples/sec: 1971.57 - lr: 0.000008 - momentum: 0.000000 2023-10-24 19:17:49,783 epoch 9 - iter 594/992 - loss 0.00941962 - time (sec): 49.78 - samples/sec: 1965.69 - lr: 0.000008 - momentum: 0.000000 2023-10-24 19:17:58,224 epoch 9 - iter 693/992 - loss 0.00898993 - time (sec): 58.23 - samples/sec: 1968.14 - lr: 0.000007 - momentum: 0.000000 2023-10-24 19:18:06,525 epoch 9 - iter 792/992 - loss 0.00910924 - time (sec): 66.53 - samples/sec: 1970.28 - lr: 0.000007 - momentum: 0.000000 2023-10-24 19:18:15,185 epoch 9 - iter 891/992 - loss 0.00928332 - time (sec): 75.19 - samples/sec: 1961.67 - lr: 0.000006 - momentum: 0.000000 2023-10-24 19:18:23,413 epoch 9 - iter 990/992 - loss 0.00916308 - time (sec): 83.41 - samples/sec: 1962.06 - lr: 0.000006 - momentum: 0.000000 2023-10-24 19:18:23,585 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:18:23,585 EPOCH 9 done: loss 0.0092 - lr: 0.000006 2023-10-24 19:18:26,698 DEV : loss 0.2309696227312088 - f1-score (micro avg) 0.761 2023-10-24 19:18:26,713 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:18:34,965 epoch 10 - iter 99/992 - loss 0.00331234 - time (sec): 8.25 - samples/sec: 1929.01 - lr: 0.000005 - momentum: 0.000000 2023-10-24 19:18:43,239 epoch 10 - iter 198/992 - loss 0.00499297 - time (sec): 16.52 - samples/sec: 1982.26 - lr: 0.000004 - momentum: 0.000000 2023-10-24 19:18:51,539 epoch 10 - iter 297/992 - loss 0.00567139 - time (sec): 24.82 - samples/sec: 1956.99 - lr: 0.000004 - momentum: 0.000000 2023-10-24 19:18:59,907 epoch 10 - iter 396/992 - loss 0.00588887 - time (sec): 33.19 - samples/sec: 1963.07 - lr: 0.000003 - momentum: 0.000000 2023-10-24 19:19:08,519 epoch 10 - iter 495/992 - loss 0.00578750 - time (sec): 41.80 - samples/sec: 1954.56 - lr: 0.000003 - momentum: 0.000000 2023-10-24 19:19:17,405 epoch 10 - iter 594/992 - loss 0.00603662 - time (sec): 50.69 - samples/sec: 1943.26 - lr: 0.000002 - momentum: 0.000000 2023-10-24 19:19:25,492 epoch 10 - iter 693/992 - loss 0.00581652 - time (sec): 58.78 - samples/sec: 1950.26 - lr: 0.000002 - momentum: 0.000000 2023-10-24 19:19:33,597 epoch 10 - iter 792/992 - loss 0.00565761 - time (sec): 66.88 - samples/sec: 1952.72 - lr: 0.000001 - momentum: 0.000000 2023-10-24 19:19:42,061 epoch 10 - iter 891/992 - loss 0.00628280 - time (sec): 75.35 - samples/sec: 1961.00 - lr: 0.000001 - momentum: 0.000000 2023-10-24 19:19:50,323 epoch 10 - iter 990/992 - loss 0.00648941 - time (sec): 83.61 - samples/sec: 1958.09 - lr: 0.000000 - momentum: 0.000000 2023-10-24 19:19:50,484 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:19:50,484 EPOCH 10 done: loss 0.0065 - lr: 0.000000 2023-10-24 19:19:53,602 DEV : loss 0.24162988364696503 - f1-score (micro avg) 0.7665 2023-10-24 19:19:53,617 saving best model 2023-10-24 19:19:54,685 ---------------------------------------------------------------------------------------------------- 2023-10-24 19:19:54,686 Loading model from best epoch ... 2023-10-24 19:19:56,216 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG 2023-10-24 19:19:59,296 Results: - F-score (micro) 0.7905 - F-score (macro) 0.6954 - Accuracy 0.6762 By class: precision recall f1-score support LOC 0.8430 0.8687 0.8556 655 PER 0.7020 0.8027 0.7490 223 ORG 0.5843 0.4094 0.4815 127 micro avg 0.7851 0.7960 0.7905 1005 macro avg 0.7097 0.6936 0.6954 1005 weighted avg 0.7790 0.7960 0.7847 1005 2023-10-24 19:19:59,296 ----------------------------------------------------------------------------------------------------