Upload ./training.log with huggingface_hub
Browse files- training.log +503 -0
training.log
ADDED
@@ -0,0 +1,503 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-25 08:56:05,291 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-25 08:56:05,292 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): BertLayer(
|
39 |
+
(attention): BertAttention(
|
40 |
+
(self): BertSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): BertSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): BertIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): BertOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): BertLayer(
|
63 |
+
(attention): BertAttention(
|
64 |
+
(self): BertSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): BertSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): BertIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): BertOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): BertLayer(
|
87 |
+
(attention): BertAttention(
|
88 |
+
(self): BertSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): BertSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): BertIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): BertOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): BertLayer(
|
111 |
+
(attention): BertAttention(
|
112 |
+
(self): BertSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): BertSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): BertIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): BertOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): BertLayer(
|
135 |
+
(attention): BertAttention(
|
136 |
+
(self): BertSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): BertSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): BertIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): BertOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): BertLayer(
|
159 |
+
(attention): BertAttention(
|
160 |
+
(self): BertSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): BertSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): BertIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): BertOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): BertLayer(
|
183 |
+
(attention): BertAttention(
|
184 |
+
(self): BertSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): BertSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): BertIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): BertOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): BertLayer(
|
207 |
+
(attention): BertAttention(
|
208 |
+
(self): BertSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): BertSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): BertIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): BertOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): BertLayer(
|
231 |
+
(attention): BertAttention(
|
232 |
+
(self): BertSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): BertSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): BertIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): BertOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): BertLayer(
|
255 |
+
(attention): BertAttention(
|
256 |
+
(self): BertSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): BertSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): BertIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): BertOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): BertLayer(
|
279 |
+
(attention): BertAttention(
|
280 |
+
(self): BertSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): BertSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): BertIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): BertOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(pooler): BertPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
307 |
+
)
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(locked_dropout): LockedDropout(p=0.5)
|
311 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
312 |
+
(loss_function): CrossEntropyLoss()
|
313 |
+
)"
|
314 |
+
2023-10-25 08:56:05,292 ----------------------------------------------------------------------------------------------------
|
315 |
+
2023-10-25 08:56:05,292 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences
|
316 |
+
- NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator
|
317 |
+
2023-10-25 08:56:05,292 ----------------------------------------------------------------------------------------------------
|
318 |
+
2023-10-25 08:56:05,292 Train: 14465 sentences
|
319 |
+
2023-10-25 08:56:05,292 (train_with_dev=False, train_with_test=False)
|
320 |
+
2023-10-25 08:56:05,292 ----------------------------------------------------------------------------------------------------
|
321 |
+
2023-10-25 08:56:05,292 Training Params:
|
322 |
+
2023-10-25 08:56:05,292 - learning_rate: "3e-05"
|
323 |
+
2023-10-25 08:56:05,292 - mini_batch_size: "4"
|
324 |
+
2023-10-25 08:56:05,292 - max_epochs: "10"
|
325 |
+
2023-10-25 08:56:05,292 - shuffle: "True"
|
326 |
+
2023-10-25 08:56:05,292 ----------------------------------------------------------------------------------------------------
|
327 |
+
2023-10-25 08:56:05,292 Plugins:
|
328 |
+
2023-10-25 08:56:05,292 - TensorboardLogger
|
329 |
+
2023-10-25 08:56:05,292 - LinearScheduler | warmup_fraction: '0.1'
|
330 |
+
2023-10-25 08:56:05,292 ----------------------------------------------------------------------------------------------------
|
331 |
+
2023-10-25 08:56:05,292 Final evaluation on model from best epoch (best-model.pt)
|
332 |
+
2023-10-25 08:56:05,292 - metric: "('micro avg', 'f1-score')"
|
333 |
+
2023-10-25 08:56:05,292 ----------------------------------------------------------------------------------------------------
|
334 |
+
2023-10-25 08:56:05,292 Computation:
|
335 |
+
2023-10-25 08:56:05,292 - compute on device: cuda:0
|
336 |
+
2023-10-25 08:56:05,292 - embedding storage: none
|
337 |
+
2023-10-25 08:56:05,292 ----------------------------------------------------------------------------------------------------
|
338 |
+
2023-10-25 08:56:05,292 Model training base path: "hmbench-letemps/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1"
|
339 |
+
2023-10-25 08:56:05,293 ----------------------------------------------------------------------------------------------------
|
340 |
+
2023-10-25 08:56:05,293 ----------------------------------------------------------------------------------------------------
|
341 |
+
2023-10-25 08:56:05,293 Logging anything other than scalars to TensorBoard is currently not supported.
|
342 |
+
2023-10-25 08:56:27,757 epoch 1 - iter 361/3617 - loss 1.29876432 - time (sec): 22.46 - samples/sec: 1685.27 - lr: 0.000003 - momentum: 0.000000
|
343 |
+
2023-10-25 08:56:50,077 epoch 1 - iter 722/3617 - loss 0.75385707 - time (sec): 44.78 - samples/sec: 1679.34 - lr: 0.000006 - momentum: 0.000000
|
344 |
+
2023-10-25 08:57:12,715 epoch 1 - iter 1083/3617 - loss 0.54794241 - time (sec): 67.42 - samples/sec: 1685.85 - lr: 0.000009 - momentum: 0.000000
|
345 |
+
2023-10-25 08:57:35,339 epoch 1 - iter 1444/3617 - loss 0.44521586 - time (sec): 90.05 - samples/sec: 1685.05 - lr: 0.000012 - momentum: 0.000000
|
346 |
+
2023-10-25 08:57:57,806 epoch 1 - iter 1805/3617 - loss 0.38171890 - time (sec): 112.51 - samples/sec: 1680.63 - lr: 0.000015 - momentum: 0.000000
|
347 |
+
2023-10-25 08:58:20,893 epoch 1 - iter 2166/3617 - loss 0.33646336 - time (sec): 135.60 - samples/sec: 1675.78 - lr: 0.000018 - momentum: 0.000000
|
348 |
+
2023-10-25 08:58:43,512 epoch 1 - iter 2527/3617 - loss 0.30293723 - time (sec): 158.22 - samples/sec: 1678.77 - lr: 0.000021 - momentum: 0.000000
|
349 |
+
2023-10-25 08:59:06,150 epoch 1 - iter 2888/3617 - loss 0.27974922 - time (sec): 180.86 - samples/sec: 1676.54 - lr: 0.000024 - momentum: 0.000000
|
350 |
+
2023-10-25 08:59:28,993 epoch 1 - iter 3249/3617 - loss 0.26111850 - time (sec): 203.70 - samples/sec: 1675.74 - lr: 0.000027 - momentum: 0.000000
|
351 |
+
2023-10-25 08:59:51,479 epoch 1 - iter 3610/3617 - loss 0.24710193 - time (sec): 226.19 - samples/sec: 1675.77 - lr: 0.000030 - momentum: 0.000000
|
352 |
+
2023-10-25 08:59:51,943 ----------------------------------------------------------------------------------------------------
|
353 |
+
2023-10-25 08:59:51,944 EPOCH 1 done: loss 0.2467 - lr: 0.000030
|
354 |
+
2023-10-25 08:59:56,474 DEV : loss 0.14493782818317413 - f1-score (micro avg) 0.5921
|
355 |
+
2023-10-25 08:59:56,496 saving best model
|
356 |
+
2023-10-25 08:59:56,967 ----------------------------------------------------------------------------------------------------
|
357 |
+
2023-10-25 09:00:19,557 epoch 2 - iter 361/3617 - loss 0.09481662 - time (sec): 22.59 - samples/sec: 1695.11 - lr: 0.000030 - momentum: 0.000000
|
358 |
+
2023-10-25 09:00:42,519 epoch 2 - iter 722/3617 - loss 0.10727292 - time (sec): 45.55 - samples/sec: 1694.09 - lr: 0.000029 - momentum: 0.000000
|
359 |
+
2023-10-25 09:01:05,260 epoch 2 - iter 1083/3617 - loss 0.10816822 - time (sec): 68.29 - samples/sec: 1694.24 - lr: 0.000029 - momentum: 0.000000
|
360 |
+
2023-10-25 09:01:27,920 epoch 2 - iter 1444/3617 - loss 0.10358701 - time (sec): 90.95 - samples/sec: 1688.21 - lr: 0.000029 - momentum: 0.000000
|
361 |
+
2023-10-25 09:01:50,585 epoch 2 - iter 1805/3617 - loss 0.10315773 - time (sec): 113.62 - samples/sec: 1685.42 - lr: 0.000028 - momentum: 0.000000
|
362 |
+
2023-10-25 09:02:13,160 epoch 2 - iter 2166/3617 - loss 0.10157426 - time (sec): 136.19 - samples/sec: 1679.24 - lr: 0.000028 - momentum: 0.000000
|
363 |
+
2023-10-25 09:02:35,597 epoch 2 - iter 2527/3617 - loss 0.10001100 - time (sec): 158.63 - samples/sec: 1675.89 - lr: 0.000028 - momentum: 0.000000
|
364 |
+
2023-10-25 09:02:58,307 epoch 2 - iter 2888/3617 - loss 0.09732052 - time (sec): 181.34 - samples/sec: 1677.76 - lr: 0.000027 - momentum: 0.000000
|
365 |
+
2023-10-25 09:03:21,029 epoch 2 - iter 3249/3617 - loss 0.09809576 - time (sec): 204.06 - samples/sec: 1675.59 - lr: 0.000027 - momentum: 0.000000
|
366 |
+
2023-10-25 09:03:43,417 epoch 2 - iter 3610/3617 - loss 0.09810723 - time (sec): 226.45 - samples/sec: 1674.16 - lr: 0.000027 - momentum: 0.000000
|
367 |
+
2023-10-25 09:03:43,852 ----------------------------------------------------------------------------------------------------
|
368 |
+
2023-10-25 09:03:43,852 EPOCH 2 done: loss 0.0980 - lr: 0.000027
|
369 |
+
2023-10-25 09:03:49,086 DEV : loss 0.1498355269432068 - f1-score (micro avg) 0.6537
|
370 |
+
2023-10-25 09:03:49,108 saving best model
|
371 |
+
2023-10-25 09:03:49,728 ----------------------------------------------------------------------------------------------------
|
372 |
+
2023-10-25 09:04:12,340 epoch 3 - iter 361/3617 - loss 0.08371286 - time (sec): 22.61 - samples/sec: 1661.67 - lr: 0.000026 - momentum: 0.000000
|
373 |
+
2023-10-25 09:04:35,198 epoch 3 - iter 722/3617 - loss 0.08266269 - time (sec): 45.47 - samples/sec: 1671.47 - lr: 0.000026 - momentum: 0.000000
|
374 |
+
2023-10-25 09:04:57,535 epoch 3 - iter 1083/3617 - loss 0.07533014 - time (sec): 67.81 - samples/sec: 1676.54 - lr: 0.000026 - momentum: 0.000000
|
375 |
+
2023-10-25 09:05:20,055 epoch 3 - iter 1444/3617 - loss 0.07921444 - time (sec): 90.33 - samples/sec: 1672.99 - lr: 0.000025 - momentum: 0.000000
|
376 |
+
2023-10-25 09:05:42,693 epoch 3 - iter 1805/3617 - loss 0.07689623 - time (sec): 112.96 - samples/sec: 1679.89 - lr: 0.000025 - momentum: 0.000000
|
377 |
+
2023-10-25 09:06:05,757 epoch 3 - iter 2166/3617 - loss 0.07594405 - time (sec): 136.03 - samples/sec: 1684.69 - lr: 0.000025 - momentum: 0.000000
|
378 |
+
2023-10-25 09:06:28,208 epoch 3 - iter 2527/3617 - loss 0.07505941 - time (sec): 158.48 - samples/sec: 1678.13 - lr: 0.000024 - momentum: 0.000000
|
379 |
+
2023-10-25 09:06:51,076 epoch 3 - iter 2888/3617 - loss 0.07488029 - time (sec): 181.35 - samples/sec: 1685.62 - lr: 0.000024 - momentum: 0.000000
|
380 |
+
2023-10-25 09:07:13,857 epoch 3 - iter 3249/3617 - loss 0.07618760 - time (sec): 204.13 - samples/sec: 1680.18 - lr: 0.000024 - momentum: 0.000000
|
381 |
+
2023-10-25 09:07:36,286 epoch 3 - iter 3610/3617 - loss 0.07650149 - time (sec): 226.56 - samples/sec: 1674.18 - lr: 0.000023 - momentum: 0.000000
|
382 |
+
2023-10-25 09:07:36,709 ----------------------------------------------------------------------------------------------------
|
383 |
+
2023-10-25 09:07:36,709 EPOCH 3 done: loss 0.0764 - lr: 0.000023
|
384 |
+
2023-10-25 09:07:41,464 DEV : loss 0.19308863580226898 - f1-score (micro avg) 0.6209
|
385 |
+
2023-10-25 09:07:41,486 ----------------------------------------------------------------------------------------------------
|
386 |
+
2023-10-25 09:08:04,147 epoch 4 - iter 361/3617 - loss 0.04740247 - time (sec): 22.66 - samples/sec: 1676.03 - lr: 0.000023 - momentum: 0.000000
|
387 |
+
2023-10-25 09:08:27,052 epoch 4 - iter 722/3617 - loss 0.04393513 - time (sec): 45.57 - samples/sec: 1694.68 - lr: 0.000023 - momentum: 0.000000
|
388 |
+
2023-10-25 09:08:49,468 epoch 4 - iter 1083/3617 - loss 0.04673719 - time (sec): 67.98 - samples/sec: 1670.64 - lr: 0.000022 - momentum: 0.000000
|
389 |
+
2023-10-25 09:09:12,096 epoch 4 - iter 1444/3617 - loss 0.04771808 - time (sec): 90.61 - samples/sec: 1670.66 - lr: 0.000022 - momentum: 0.000000
|
390 |
+
2023-10-25 09:09:34,752 epoch 4 - iter 1805/3617 - loss 0.04805421 - time (sec): 113.27 - samples/sec: 1672.54 - lr: 0.000022 - momentum: 0.000000
|
391 |
+
2023-10-25 09:09:57,527 epoch 4 - iter 2166/3617 - loss 0.04811747 - time (sec): 136.04 - samples/sec: 1675.32 - lr: 0.000021 - momentum: 0.000000
|
392 |
+
2023-10-25 09:10:20,097 epoch 4 - iter 2527/3617 - loss 0.04985558 - time (sec): 158.61 - samples/sec: 1672.88 - lr: 0.000021 - momentum: 0.000000
|
393 |
+
2023-10-25 09:10:43,113 epoch 4 - iter 2888/3617 - loss 0.04967931 - time (sec): 181.63 - samples/sec: 1666.35 - lr: 0.000021 - momentum: 0.000000
|
394 |
+
2023-10-25 09:11:05,900 epoch 4 - iter 3249/3617 - loss 0.04983072 - time (sec): 204.41 - samples/sec: 1665.34 - lr: 0.000020 - momentum: 0.000000
|
395 |
+
2023-10-25 09:11:28,853 epoch 4 - iter 3610/3617 - loss 0.05188277 - time (sec): 227.37 - samples/sec: 1667.33 - lr: 0.000020 - momentum: 0.000000
|
396 |
+
2023-10-25 09:11:29,293 ----------------------------------------------------------------------------------------------------
|
397 |
+
2023-10-25 09:11:29,293 EPOCH 4 done: loss 0.0518 - lr: 0.000020
|
398 |
+
2023-10-25 09:11:34,065 DEV : loss 0.25538942217826843 - f1-score (micro avg) 0.6376
|
399 |
+
2023-10-25 09:11:34,087 ----------------------------------------------------------------------------------------------------
|
400 |
+
2023-10-25 09:11:56,512 epoch 5 - iter 361/3617 - loss 0.03131284 - time (sec): 22.42 - samples/sec: 1629.91 - lr: 0.000020 - momentum: 0.000000
|
401 |
+
2023-10-25 09:12:19,313 epoch 5 - iter 722/3617 - loss 0.03223206 - time (sec): 45.22 - samples/sec: 1639.25 - lr: 0.000019 - momentum: 0.000000
|
402 |
+
2023-10-25 09:12:42,036 epoch 5 - iter 1083/3617 - loss 0.03088082 - time (sec): 67.95 - samples/sec: 1652.27 - lr: 0.000019 - momentum: 0.000000
|
403 |
+
2023-10-25 09:13:04,677 epoch 5 - iter 1444/3617 - loss 0.03409690 - time (sec): 90.59 - samples/sec: 1655.84 - lr: 0.000019 - momentum: 0.000000
|
404 |
+
2023-10-25 09:13:27,356 epoch 5 - iter 1805/3617 - loss 0.03218071 - time (sec): 113.27 - samples/sec: 1668.62 - lr: 0.000018 - momentum: 0.000000
|
405 |
+
2023-10-25 09:13:49,986 epoch 5 - iter 2166/3617 - loss 0.03391101 - time (sec): 135.90 - samples/sec: 1665.03 - lr: 0.000018 - momentum: 0.000000
|
406 |
+
2023-10-25 09:14:12,624 epoch 5 - iter 2527/3617 - loss 0.03493067 - time (sec): 158.54 - samples/sec: 1662.52 - lr: 0.000018 - momentum: 0.000000
|
407 |
+
2023-10-25 09:14:35,385 epoch 5 - iter 2888/3617 - loss 0.03495628 - time (sec): 181.30 - samples/sec: 1670.98 - lr: 0.000017 - momentum: 0.000000
|
408 |
+
2023-10-25 09:14:58,001 epoch 5 - iter 3249/3617 - loss 0.03497871 - time (sec): 203.91 - samples/sec: 1670.29 - lr: 0.000017 - momentum: 0.000000
|
409 |
+
2023-10-25 09:15:20,904 epoch 5 - iter 3610/3617 - loss 0.03564780 - time (sec): 226.82 - samples/sec: 1672.37 - lr: 0.000017 - momentum: 0.000000
|
410 |
+
2023-10-25 09:15:21,319 ----------------------------------------------------------------------------------------------------
|
411 |
+
2023-10-25 09:15:21,319 EPOCH 5 done: loss 0.0357 - lr: 0.000017
|
412 |
+
2023-10-25 09:15:26,608 DEV : loss 0.3036385476589203 - f1-score (micro avg) 0.6379
|
413 |
+
2023-10-25 09:15:26,630 ----------------------------------------------------------------------------------------------------
|
414 |
+
2023-10-25 09:15:49,295 epoch 6 - iter 361/3617 - loss 0.01822029 - time (sec): 22.66 - samples/sec: 1605.12 - lr: 0.000016 - momentum: 0.000000
|
415 |
+
2023-10-25 09:16:12,087 epoch 6 - iter 722/3617 - loss 0.02217639 - time (sec): 45.46 - samples/sec: 1662.06 - lr: 0.000016 - momentum: 0.000000
|
416 |
+
2023-10-25 09:16:34,918 epoch 6 - iter 1083/3617 - loss 0.02506345 - time (sec): 68.29 - samples/sec: 1664.01 - lr: 0.000016 - momentum: 0.000000
|
417 |
+
2023-10-25 09:16:57,390 epoch 6 - iter 1444/3617 - loss 0.02414606 - time (sec): 90.76 - samples/sec: 1655.24 - lr: 0.000015 - momentum: 0.000000
|
418 |
+
2023-10-25 09:17:20,050 epoch 6 - iter 1805/3617 - loss 0.02424517 - time (sec): 113.42 - samples/sec: 1662.94 - lr: 0.000015 - momentum: 0.000000
|
419 |
+
2023-10-25 09:17:42,507 epoch 6 - iter 2166/3617 - loss 0.02407469 - time (sec): 135.88 - samples/sec: 1663.03 - lr: 0.000015 - momentum: 0.000000
|
420 |
+
2023-10-25 09:18:05,243 epoch 6 - iter 2527/3617 - loss 0.02329897 - time (sec): 158.61 - samples/sec: 1665.13 - lr: 0.000014 - momentum: 0.000000
|
421 |
+
2023-10-25 09:18:28,017 epoch 6 - iter 2888/3617 - loss 0.02317000 - time (sec): 181.39 - samples/sec: 1670.08 - lr: 0.000014 - momentum: 0.000000
|
422 |
+
2023-10-25 09:18:50,676 epoch 6 - iter 3249/3617 - loss 0.02253595 - time (sec): 204.04 - samples/sec: 1670.18 - lr: 0.000014 - momentum: 0.000000
|
423 |
+
2023-10-25 09:19:13,356 epoch 6 - iter 3610/3617 - loss 0.02298512 - time (sec): 226.73 - samples/sec: 1671.45 - lr: 0.000013 - momentum: 0.000000
|
424 |
+
2023-10-25 09:19:13,810 ----------------------------------------------------------------------------------------------------
|
425 |
+
2023-10-25 09:19:13,810 EPOCH 6 done: loss 0.0230 - lr: 0.000013
|
426 |
+
2023-10-25 09:19:19,090 DEV : loss 0.3258330523967743 - f1-score (micro avg) 0.6394
|
427 |
+
2023-10-25 09:19:19,113 ----------------------------------------------------------------------------------------------------
|
428 |
+
2023-10-25 09:19:41,742 epoch 7 - iter 361/3617 - loss 0.01238420 - time (sec): 22.63 - samples/sec: 1691.85 - lr: 0.000013 - momentum: 0.000000
|
429 |
+
2023-10-25 09:20:04,086 epoch 7 - iter 722/3617 - loss 0.01141601 - time (sec): 44.97 - samples/sec: 1678.52 - lr: 0.000013 - momentum: 0.000000
|
430 |
+
2023-10-25 09:20:26,635 epoch 7 - iter 1083/3617 - loss 0.01410956 - time (sec): 67.52 - samples/sec: 1670.11 - lr: 0.000012 - momentum: 0.000000
|
431 |
+
2023-10-25 09:20:49,285 epoch 7 - iter 1444/3617 - loss 0.01436451 - time (sec): 90.17 - samples/sec: 1676.14 - lr: 0.000012 - momentum: 0.000000
|
432 |
+
2023-10-25 09:21:12,335 epoch 7 - iter 1805/3617 - loss 0.01504339 - time (sec): 113.22 - samples/sec: 1693.17 - lr: 0.000012 - momentum: 0.000000
|
433 |
+
2023-10-25 09:21:34,746 epoch 7 - iter 2166/3617 - loss 0.01505583 - time (sec): 135.63 - samples/sec: 1683.15 - lr: 0.000011 - momentum: 0.000000
|
434 |
+
2023-10-25 09:21:57,667 epoch 7 - iter 2527/3617 - loss 0.01548792 - time (sec): 158.55 - samples/sec: 1678.86 - lr: 0.000011 - momentum: 0.000000
|
435 |
+
2023-10-25 09:22:20,310 epoch 7 - iter 2888/3617 - loss 0.01540908 - time (sec): 181.20 - samples/sec: 1677.51 - lr: 0.000011 - momentum: 0.000000
|
436 |
+
2023-10-25 09:22:43,073 epoch 7 - iter 3249/3617 - loss 0.01583643 - time (sec): 203.96 - samples/sec: 1679.41 - lr: 0.000010 - momentum: 0.000000
|
437 |
+
2023-10-25 09:23:05,722 epoch 7 - iter 3610/3617 - loss 0.01543481 - time (sec): 226.61 - samples/sec: 1673.87 - lr: 0.000010 - momentum: 0.000000
|
438 |
+
2023-10-25 09:23:06,127 ----------------------------------------------------------------------------------------------------
|
439 |
+
2023-10-25 09:23:06,128 EPOCH 7 done: loss 0.0155 - lr: 0.000010
|
440 |
+
2023-10-25 09:23:10,894 DEV : loss 0.3687475621700287 - f1-score (micro avg) 0.6512
|
441 |
+
2023-10-25 09:23:10,917 ----------------------------------------------------------------------------------------------------
|
442 |
+
2023-10-25 09:23:34,320 epoch 8 - iter 361/3617 - loss 0.01011873 - time (sec): 23.40 - samples/sec: 1642.59 - lr: 0.000010 - momentum: 0.000000
|
443 |
+
2023-10-25 09:23:57,093 epoch 8 - iter 722/3617 - loss 0.01183084 - time (sec): 46.18 - samples/sec: 1647.32 - lr: 0.000009 - momentum: 0.000000
|
444 |
+
2023-10-25 09:24:19,987 epoch 8 - iter 1083/3617 - loss 0.01114849 - time (sec): 69.07 - samples/sec: 1675.33 - lr: 0.000009 - momentum: 0.000000
|
445 |
+
2023-10-25 09:24:42,267 epoch 8 - iter 1444/3617 - loss 0.01144658 - time (sec): 91.35 - samples/sec: 1671.61 - lr: 0.000009 - momentum: 0.000000
|
446 |
+
2023-10-25 09:25:04,971 epoch 8 - iter 1805/3617 - loss 0.01085694 - time (sec): 114.05 - samples/sec: 1671.04 - lr: 0.000008 - momentum: 0.000000
|
447 |
+
2023-10-25 09:25:27,776 epoch 8 - iter 2166/3617 - loss 0.01113943 - time (sec): 136.86 - samples/sec: 1670.33 - lr: 0.000008 - momentum: 0.000000
|
448 |
+
2023-10-25 09:25:50,272 epoch 8 - iter 2527/3617 - loss 0.01110272 - time (sec): 159.35 - samples/sec: 1665.95 - lr: 0.000008 - momentum: 0.000000
|
449 |
+
2023-10-25 09:26:13,117 epoch 8 - iter 2888/3617 - loss 0.01112695 - time (sec): 182.20 - samples/sec: 1667.86 - lr: 0.000007 - momentum: 0.000000
|
450 |
+
2023-10-25 09:26:35,738 epoch 8 - iter 3249/3617 - loss 0.01071467 - time (sec): 204.82 - samples/sec: 1667.74 - lr: 0.000007 - momentum: 0.000000
|
451 |
+
2023-10-25 09:26:58,274 epoch 8 - iter 3610/3617 - loss 0.01074639 - time (sec): 227.36 - samples/sec: 1668.14 - lr: 0.000007 - momentum: 0.000000
|
452 |
+
2023-10-25 09:26:58,691 ----------------------------------------------------------------------------------------------------
|
453 |
+
2023-10-25 09:26:58,691 EPOCH 8 done: loss 0.0107 - lr: 0.000007
|
454 |
+
2023-10-25 09:27:03,463 DEV : loss 0.38349881768226624 - f1-score (micro avg) 0.6433
|
455 |
+
2023-10-25 09:27:03,486 ----------------------------------------------------------------------------------------------------
|
456 |
+
2023-10-25 09:27:26,470 epoch 9 - iter 361/3617 - loss 0.00556864 - time (sec): 22.98 - samples/sec: 1698.80 - lr: 0.000006 - momentum: 0.000000
|
457 |
+
2023-10-25 09:27:49,214 epoch 9 - iter 722/3617 - loss 0.00783730 - time (sec): 45.73 - samples/sec: 1713.36 - lr: 0.000006 - momentum: 0.000000
|
458 |
+
2023-10-25 09:28:11,732 epoch 9 - iter 1083/3617 - loss 0.00688603 - time (sec): 68.25 - samples/sec: 1699.80 - lr: 0.000006 - momentum: 0.000000
|
459 |
+
2023-10-25 09:28:34,228 epoch 9 - iter 1444/3617 - loss 0.00661452 - time (sec): 90.74 - samples/sec: 1681.63 - lr: 0.000005 - momentum: 0.000000
|
460 |
+
2023-10-25 09:28:57,185 epoch 9 - iter 1805/3617 - loss 0.00671017 - time (sec): 113.70 - samples/sec: 1690.74 - lr: 0.000005 - momentum: 0.000000
|
461 |
+
2023-10-25 09:29:19,774 epoch 9 - iter 2166/3617 - loss 0.00667753 - time (sec): 136.29 - samples/sec: 1681.32 - lr: 0.000005 - momentum: 0.000000
|
462 |
+
2023-10-25 09:29:42,402 epoch 9 - iter 2527/3617 - loss 0.00799751 - time (sec): 158.92 - samples/sec: 1675.07 - lr: 0.000004 - momentum: 0.000000
|
463 |
+
2023-10-25 09:30:05,056 epoch 9 - iter 2888/3617 - loss 0.00813035 - time (sec): 181.57 - samples/sec: 1675.38 - lr: 0.000004 - momentum: 0.000000
|
464 |
+
2023-10-25 09:30:28,208 epoch 9 - iter 3249/3617 - loss 0.00804585 - time (sec): 204.72 - samples/sec: 1670.75 - lr: 0.000004 - momentum: 0.000000
|
465 |
+
2023-10-25 09:30:50,683 epoch 9 - iter 3610/3617 - loss 0.00784812 - time (sec): 227.20 - samples/sec: 1668.02 - lr: 0.000003 - momentum: 0.000000
|
466 |
+
2023-10-25 09:30:51,156 ----------------------------------------------------------------------------------------------------
|
467 |
+
2023-10-25 09:30:51,156 EPOCH 9 done: loss 0.0079 - lr: 0.000003
|
468 |
+
2023-10-25 09:30:55,937 DEV : loss 0.3988388478755951 - f1-score (micro avg) 0.6402
|
469 |
+
2023-10-25 09:30:55,959 ----------------------------------------------------------------------------------------------------
|
470 |
+
2023-10-25 09:31:18,550 epoch 10 - iter 361/3617 - loss 0.00169395 - time (sec): 22.59 - samples/sec: 1691.67 - lr: 0.000003 - momentum: 0.000000
|
471 |
+
2023-10-25 09:31:41,128 epoch 10 - iter 722/3617 - loss 0.00257176 - time (sec): 45.17 - samples/sec: 1691.41 - lr: 0.000003 - momentum: 0.000000
|
472 |
+
2023-10-25 09:32:03,905 epoch 10 - iter 1083/3617 - loss 0.00388498 - time (sec): 67.95 - samples/sec: 1670.61 - lr: 0.000002 - momentum: 0.000000
|
473 |
+
2023-10-25 09:32:26,672 epoch 10 - iter 1444/3617 - loss 0.00415693 - time (sec): 90.71 - samples/sec: 1674.51 - lr: 0.000002 - momentum: 0.000000
|
474 |
+
2023-10-25 09:32:49,198 epoch 10 - iter 1805/3617 - loss 0.00422595 - time (sec): 113.24 - samples/sec: 1665.99 - lr: 0.000002 - momentum: 0.000000
|
475 |
+
2023-10-25 09:33:11,815 epoch 10 - iter 2166/3617 - loss 0.00444188 - time (sec): 135.86 - samples/sec: 1665.22 - lr: 0.000001 - momentum: 0.000000
|
476 |
+
2023-10-25 09:33:34,466 epoch 10 - iter 2527/3617 - loss 0.00456308 - time (sec): 158.51 - samples/sec: 1659.07 - lr: 0.000001 - momentum: 0.000000
|
477 |
+
2023-10-25 09:33:57,358 epoch 10 - iter 2888/3617 - loss 0.00457433 - time (sec): 181.40 - samples/sec: 1663.72 - lr: 0.000001 - momentum: 0.000000
|
478 |
+
2023-10-25 09:34:20,142 epoch 10 - iter 3249/3617 - loss 0.00465404 - time (sec): 204.18 - samples/sec: 1668.71 - lr: 0.000000 - momentum: 0.000000
|
479 |
+
2023-10-25 09:34:42,847 epoch 10 - iter 3610/3617 - loss 0.00478068 - time (sec): 226.89 - samples/sec: 1672.23 - lr: 0.000000 - momentum: 0.000000
|
480 |
+
2023-10-25 09:34:43,247 ----------------------------------------------------------------------------------------------------
|
481 |
+
2023-10-25 09:34:43,247 EPOCH 10 done: loss 0.0048 - lr: 0.000000
|
482 |
+
2023-10-25 09:34:48,560 DEV : loss 0.42030808329582214 - f1-score (micro avg) 0.6507
|
483 |
+
2023-10-25 09:34:49,057 ----------------------------------------------------------------------------------------------------
|
484 |
+
2023-10-25 09:34:49,058 Loading model from best epoch ...
|
485 |
+
2023-10-25 09:34:50,737 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org
|
486 |
+
2023-10-25 09:34:56,439
|
487 |
+
Results:
|
488 |
+
- F-score (micro) 0.6562
|
489 |
+
- F-score (macro) 0.4469
|
490 |
+
- Accuracy 0.499
|
491 |
+
|
492 |
+
By class:
|
493 |
+
precision recall f1-score support
|
494 |
+
|
495 |
+
loc 0.6340 0.8088 0.7108 591
|
496 |
+
pers 0.5688 0.7059 0.6300 357
|
497 |
+
org 0.0000 0.0000 0.0000 79
|
498 |
+
|
499 |
+
micro avg 0.6093 0.7108 0.6562 1027
|
500 |
+
macro avg 0.4009 0.5049 0.4469 1027
|
501 |
+
weighted avg 0.5626 0.7108 0.6280 1027
|
502 |
+
|
503 |
+
2023-10-25 09:34:56,439 ----------------------------------------------------------------------------------------------------
|