stefan-it commited on
Commit
c47c491
·
1 Parent(s): c811c6b

Upload ./training.log with huggingface_hub

Browse files
Files changed (1) hide show
  1. training.log +503 -0
training.log ADDED
@@ -0,0 +1,503 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-10-25 08:56:05,291 ----------------------------------------------------------------------------------------------------
2
+ 2023-10-25 08:56:05,292 Model: "SequenceTagger(
3
+ (embeddings): TransformerWordEmbeddings(
4
+ (model): BertModel(
5
+ (embeddings): BertEmbeddings(
6
+ (word_embeddings): Embedding(64001, 768)
7
+ (position_embeddings): Embedding(512, 768)
8
+ (token_type_embeddings): Embedding(2, 768)
9
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
10
+ (dropout): Dropout(p=0.1, inplace=False)
11
+ )
12
+ (encoder): BertEncoder(
13
+ (layer): ModuleList(
14
+ (0): BertLayer(
15
+ (attention): BertAttention(
16
+ (self): BertSelfAttention(
17
+ (query): Linear(in_features=768, out_features=768, bias=True)
18
+ (key): Linear(in_features=768, out_features=768, bias=True)
19
+ (value): Linear(in_features=768, out_features=768, bias=True)
20
+ (dropout): Dropout(p=0.1, inplace=False)
21
+ )
22
+ (output): BertSelfOutput(
23
+ (dense): Linear(in_features=768, out_features=768, bias=True)
24
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
25
+ (dropout): Dropout(p=0.1, inplace=False)
26
+ )
27
+ )
28
+ (intermediate): BertIntermediate(
29
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
30
+ (intermediate_act_fn): GELUActivation()
31
+ )
32
+ (output): BertOutput(
33
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
34
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
35
+ (dropout): Dropout(p=0.1, inplace=False)
36
+ )
37
+ )
38
+ (1): BertLayer(
39
+ (attention): BertAttention(
40
+ (self): BertSelfAttention(
41
+ (query): Linear(in_features=768, out_features=768, bias=True)
42
+ (key): Linear(in_features=768, out_features=768, bias=True)
43
+ (value): Linear(in_features=768, out_features=768, bias=True)
44
+ (dropout): Dropout(p=0.1, inplace=False)
45
+ )
46
+ (output): BertSelfOutput(
47
+ (dense): Linear(in_features=768, out_features=768, bias=True)
48
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
49
+ (dropout): Dropout(p=0.1, inplace=False)
50
+ )
51
+ )
52
+ (intermediate): BertIntermediate(
53
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
54
+ (intermediate_act_fn): GELUActivation()
55
+ )
56
+ (output): BertOutput(
57
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
58
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
59
+ (dropout): Dropout(p=0.1, inplace=False)
60
+ )
61
+ )
62
+ (2): BertLayer(
63
+ (attention): BertAttention(
64
+ (self): BertSelfAttention(
65
+ (query): Linear(in_features=768, out_features=768, bias=True)
66
+ (key): Linear(in_features=768, out_features=768, bias=True)
67
+ (value): Linear(in_features=768, out_features=768, bias=True)
68
+ (dropout): Dropout(p=0.1, inplace=False)
69
+ )
70
+ (output): BertSelfOutput(
71
+ (dense): Linear(in_features=768, out_features=768, bias=True)
72
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
73
+ (dropout): Dropout(p=0.1, inplace=False)
74
+ )
75
+ )
76
+ (intermediate): BertIntermediate(
77
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
78
+ (intermediate_act_fn): GELUActivation()
79
+ )
80
+ (output): BertOutput(
81
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
82
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
83
+ (dropout): Dropout(p=0.1, inplace=False)
84
+ )
85
+ )
86
+ (3): BertLayer(
87
+ (attention): BertAttention(
88
+ (self): BertSelfAttention(
89
+ (query): Linear(in_features=768, out_features=768, bias=True)
90
+ (key): Linear(in_features=768, out_features=768, bias=True)
91
+ (value): Linear(in_features=768, out_features=768, bias=True)
92
+ (dropout): Dropout(p=0.1, inplace=False)
93
+ )
94
+ (output): BertSelfOutput(
95
+ (dense): Linear(in_features=768, out_features=768, bias=True)
96
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
97
+ (dropout): Dropout(p=0.1, inplace=False)
98
+ )
99
+ )
100
+ (intermediate): BertIntermediate(
101
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
102
+ (intermediate_act_fn): GELUActivation()
103
+ )
104
+ (output): BertOutput(
105
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
106
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
107
+ (dropout): Dropout(p=0.1, inplace=False)
108
+ )
109
+ )
110
+ (4): BertLayer(
111
+ (attention): BertAttention(
112
+ (self): BertSelfAttention(
113
+ (query): Linear(in_features=768, out_features=768, bias=True)
114
+ (key): Linear(in_features=768, out_features=768, bias=True)
115
+ (value): Linear(in_features=768, out_features=768, bias=True)
116
+ (dropout): Dropout(p=0.1, inplace=False)
117
+ )
118
+ (output): BertSelfOutput(
119
+ (dense): Linear(in_features=768, out_features=768, bias=True)
120
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
121
+ (dropout): Dropout(p=0.1, inplace=False)
122
+ )
123
+ )
124
+ (intermediate): BertIntermediate(
125
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
126
+ (intermediate_act_fn): GELUActivation()
127
+ )
128
+ (output): BertOutput(
129
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
130
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
131
+ (dropout): Dropout(p=0.1, inplace=False)
132
+ )
133
+ )
134
+ (5): BertLayer(
135
+ (attention): BertAttention(
136
+ (self): BertSelfAttention(
137
+ (query): Linear(in_features=768, out_features=768, bias=True)
138
+ (key): Linear(in_features=768, out_features=768, bias=True)
139
+ (value): Linear(in_features=768, out_features=768, bias=True)
140
+ (dropout): Dropout(p=0.1, inplace=False)
141
+ )
142
+ (output): BertSelfOutput(
143
+ (dense): Linear(in_features=768, out_features=768, bias=True)
144
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
145
+ (dropout): Dropout(p=0.1, inplace=False)
146
+ )
147
+ )
148
+ (intermediate): BertIntermediate(
149
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
150
+ (intermediate_act_fn): GELUActivation()
151
+ )
152
+ (output): BertOutput(
153
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
154
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
155
+ (dropout): Dropout(p=0.1, inplace=False)
156
+ )
157
+ )
158
+ (6): BertLayer(
159
+ (attention): BertAttention(
160
+ (self): BertSelfAttention(
161
+ (query): Linear(in_features=768, out_features=768, bias=True)
162
+ (key): Linear(in_features=768, out_features=768, bias=True)
163
+ (value): Linear(in_features=768, out_features=768, bias=True)
164
+ (dropout): Dropout(p=0.1, inplace=False)
165
+ )
166
+ (output): BertSelfOutput(
167
+ (dense): Linear(in_features=768, out_features=768, bias=True)
168
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
169
+ (dropout): Dropout(p=0.1, inplace=False)
170
+ )
171
+ )
172
+ (intermediate): BertIntermediate(
173
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
174
+ (intermediate_act_fn): GELUActivation()
175
+ )
176
+ (output): BertOutput(
177
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
178
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
179
+ (dropout): Dropout(p=0.1, inplace=False)
180
+ )
181
+ )
182
+ (7): BertLayer(
183
+ (attention): BertAttention(
184
+ (self): BertSelfAttention(
185
+ (query): Linear(in_features=768, out_features=768, bias=True)
186
+ (key): Linear(in_features=768, out_features=768, bias=True)
187
+ (value): Linear(in_features=768, out_features=768, bias=True)
188
+ (dropout): Dropout(p=0.1, inplace=False)
189
+ )
190
+ (output): BertSelfOutput(
191
+ (dense): Linear(in_features=768, out_features=768, bias=True)
192
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
193
+ (dropout): Dropout(p=0.1, inplace=False)
194
+ )
195
+ )
196
+ (intermediate): BertIntermediate(
197
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
198
+ (intermediate_act_fn): GELUActivation()
199
+ )
200
+ (output): BertOutput(
201
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
202
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
203
+ (dropout): Dropout(p=0.1, inplace=False)
204
+ )
205
+ )
206
+ (8): BertLayer(
207
+ (attention): BertAttention(
208
+ (self): BertSelfAttention(
209
+ (query): Linear(in_features=768, out_features=768, bias=True)
210
+ (key): Linear(in_features=768, out_features=768, bias=True)
211
+ (value): Linear(in_features=768, out_features=768, bias=True)
212
+ (dropout): Dropout(p=0.1, inplace=False)
213
+ )
214
+ (output): BertSelfOutput(
215
+ (dense): Linear(in_features=768, out_features=768, bias=True)
216
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
217
+ (dropout): Dropout(p=0.1, inplace=False)
218
+ )
219
+ )
220
+ (intermediate): BertIntermediate(
221
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
222
+ (intermediate_act_fn): GELUActivation()
223
+ )
224
+ (output): BertOutput(
225
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
226
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
227
+ (dropout): Dropout(p=0.1, inplace=False)
228
+ )
229
+ )
230
+ (9): BertLayer(
231
+ (attention): BertAttention(
232
+ (self): BertSelfAttention(
233
+ (query): Linear(in_features=768, out_features=768, bias=True)
234
+ (key): Linear(in_features=768, out_features=768, bias=True)
235
+ (value): Linear(in_features=768, out_features=768, bias=True)
236
+ (dropout): Dropout(p=0.1, inplace=False)
237
+ )
238
+ (output): BertSelfOutput(
239
+ (dense): Linear(in_features=768, out_features=768, bias=True)
240
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
241
+ (dropout): Dropout(p=0.1, inplace=False)
242
+ )
243
+ )
244
+ (intermediate): BertIntermediate(
245
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
246
+ (intermediate_act_fn): GELUActivation()
247
+ )
248
+ (output): BertOutput(
249
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
250
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
251
+ (dropout): Dropout(p=0.1, inplace=False)
252
+ )
253
+ )
254
+ (10): BertLayer(
255
+ (attention): BertAttention(
256
+ (self): BertSelfAttention(
257
+ (query): Linear(in_features=768, out_features=768, bias=True)
258
+ (key): Linear(in_features=768, out_features=768, bias=True)
259
+ (value): Linear(in_features=768, out_features=768, bias=True)
260
+ (dropout): Dropout(p=0.1, inplace=False)
261
+ )
262
+ (output): BertSelfOutput(
263
+ (dense): Linear(in_features=768, out_features=768, bias=True)
264
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
265
+ (dropout): Dropout(p=0.1, inplace=False)
266
+ )
267
+ )
268
+ (intermediate): BertIntermediate(
269
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
270
+ (intermediate_act_fn): GELUActivation()
271
+ )
272
+ (output): BertOutput(
273
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
274
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
275
+ (dropout): Dropout(p=0.1, inplace=False)
276
+ )
277
+ )
278
+ (11): BertLayer(
279
+ (attention): BertAttention(
280
+ (self): BertSelfAttention(
281
+ (query): Linear(in_features=768, out_features=768, bias=True)
282
+ (key): Linear(in_features=768, out_features=768, bias=True)
283
+ (value): Linear(in_features=768, out_features=768, bias=True)
284
+ (dropout): Dropout(p=0.1, inplace=False)
285
+ )
286
+ (output): BertSelfOutput(
287
+ (dense): Linear(in_features=768, out_features=768, bias=True)
288
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
289
+ (dropout): Dropout(p=0.1, inplace=False)
290
+ )
291
+ )
292
+ (intermediate): BertIntermediate(
293
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
294
+ (intermediate_act_fn): GELUActivation()
295
+ )
296
+ (output): BertOutput(
297
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
298
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
299
+ (dropout): Dropout(p=0.1, inplace=False)
300
+ )
301
+ )
302
+ )
303
+ )
304
+ (pooler): BertPooler(
305
+ (dense): Linear(in_features=768, out_features=768, bias=True)
306
+ (activation): Tanh()
307
+ )
308
+ )
309
+ )
310
+ (locked_dropout): LockedDropout(p=0.5)
311
+ (linear): Linear(in_features=768, out_features=13, bias=True)
312
+ (loss_function): CrossEntropyLoss()
313
+ )"
314
+ 2023-10-25 08:56:05,292 ----------------------------------------------------------------------------------------------------
315
+ 2023-10-25 08:56:05,292 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences
316
+ - NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator
317
+ 2023-10-25 08:56:05,292 ----------------------------------------------------------------------------------------------------
318
+ 2023-10-25 08:56:05,292 Train: 14465 sentences
319
+ 2023-10-25 08:56:05,292 (train_with_dev=False, train_with_test=False)
320
+ 2023-10-25 08:56:05,292 ----------------------------------------------------------------------------------------------------
321
+ 2023-10-25 08:56:05,292 Training Params:
322
+ 2023-10-25 08:56:05,292 - learning_rate: "3e-05"
323
+ 2023-10-25 08:56:05,292 - mini_batch_size: "4"
324
+ 2023-10-25 08:56:05,292 - max_epochs: "10"
325
+ 2023-10-25 08:56:05,292 - shuffle: "True"
326
+ 2023-10-25 08:56:05,292 ----------------------------------------------------------------------------------------------------
327
+ 2023-10-25 08:56:05,292 Plugins:
328
+ 2023-10-25 08:56:05,292 - TensorboardLogger
329
+ 2023-10-25 08:56:05,292 - LinearScheduler | warmup_fraction: '0.1'
330
+ 2023-10-25 08:56:05,292 ----------------------------------------------------------------------------------------------------
331
+ 2023-10-25 08:56:05,292 Final evaluation on model from best epoch (best-model.pt)
332
+ 2023-10-25 08:56:05,292 - metric: "('micro avg', 'f1-score')"
333
+ 2023-10-25 08:56:05,292 ----------------------------------------------------------------------------------------------------
334
+ 2023-10-25 08:56:05,292 Computation:
335
+ 2023-10-25 08:56:05,292 - compute on device: cuda:0
336
+ 2023-10-25 08:56:05,292 - embedding storage: none
337
+ 2023-10-25 08:56:05,292 ----------------------------------------------------------------------------------------------------
338
+ 2023-10-25 08:56:05,292 Model training base path: "hmbench-letemps/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1"
339
+ 2023-10-25 08:56:05,293 ----------------------------------------------------------------------------------------------------
340
+ 2023-10-25 08:56:05,293 ----------------------------------------------------------------------------------------------------
341
+ 2023-10-25 08:56:05,293 Logging anything other than scalars to TensorBoard is currently not supported.
342
+ 2023-10-25 08:56:27,757 epoch 1 - iter 361/3617 - loss 1.29876432 - time (sec): 22.46 - samples/sec: 1685.27 - lr: 0.000003 - momentum: 0.000000
343
+ 2023-10-25 08:56:50,077 epoch 1 - iter 722/3617 - loss 0.75385707 - time (sec): 44.78 - samples/sec: 1679.34 - lr: 0.000006 - momentum: 0.000000
344
+ 2023-10-25 08:57:12,715 epoch 1 - iter 1083/3617 - loss 0.54794241 - time (sec): 67.42 - samples/sec: 1685.85 - lr: 0.000009 - momentum: 0.000000
345
+ 2023-10-25 08:57:35,339 epoch 1 - iter 1444/3617 - loss 0.44521586 - time (sec): 90.05 - samples/sec: 1685.05 - lr: 0.000012 - momentum: 0.000000
346
+ 2023-10-25 08:57:57,806 epoch 1 - iter 1805/3617 - loss 0.38171890 - time (sec): 112.51 - samples/sec: 1680.63 - lr: 0.000015 - momentum: 0.000000
347
+ 2023-10-25 08:58:20,893 epoch 1 - iter 2166/3617 - loss 0.33646336 - time (sec): 135.60 - samples/sec: 1675.78 - lr: 0.000018 - momentum: 0.000000
348
+ 2023-10-25 08:58:43,512 epoch 1 - iter 2527/3617 - loss 0.30293723 - time (sec): 158.22 - samples/sec: 1678.77 - lr: 0.000021 - momentum: 0.000000
349
+ 2023-10-25 08:59:06,150 epoch 1 - iter 2888/3617 - loss 0.27974922 - time (sec): 180.86 - samples/sec: 1676.54 - lr: 0.000024 - momentum: 0.000000
350
+ 2023-10-25 08:59:28,993 epoch 1 - iter 3249/3617 - loss 0.26111850 - time (sec): 203.70 - samples/sec: 1675.74 - lr: 0.000027 - momentum: 0.000000
351
+ 2023-10-25 08:59:51,479 epoch 1 - iter 3610/3617 - loss 0.24710193 - time (sec): 226.19 - samples/sec: 1675.77 - lr: 0.000030 - momentum: 0.000000
352
+ 2023-10-25 08:59:51,943 ----------------------------------------------------------------------------------------------------
353
+ 2023-10-25 08:59:51,944 EPOCH 1 done: loss 0.2467 - lr: 0.000030
354
+ 2023-10-25 08:59:56,474 DEV : loss 0.14493782818317413 - f1-score (micro avg) 0.5921
355
+ 2023-10-25 08:59:56,496 saving best model
356
+ 2023-10-25 08:59:56,967 ----------------------------------------------------------------------------------------------------
357
+ 2023-10-25 09:00:19,557 epoch 2 - iter 361/3617 - loss 0.09481662 - time (sec): 22.59 - samples/sec: 1695.11 - lr: 0.000030 - momentum: 0.000000
358
+ 2023-10-25 09:00:42,519 epoch 2 - iter 722/3617 - loss 0.10727292 - time (sec): 45.55 - samples/sec: 1694.09 - lr: 0.000029 - momentum: 0.000000
359
+ 2023-10-25 09:01:05,260 epoch 2 - iter 1083/3617 - loss 0.10816822 - time (sec): 68.29 - samples/sec: 1694.24 - lr: 0.000029 - momentum: 0.000000
360
+ 2023-10-25 09:01:27,920 epoch 2 - iter 1444/3617 - loss 0.10358701 - time (sec): 90.95 - samples/sec: 1688.21 - lr: 0.000029 - momentum: 0.000000
361
+ 2023-10-25 09:01:50,585 epoch 2 - iter 1805/3617 - loss 0.10315773 - time (sec): 113.62 - samples/sec: 1685.42 - lr: 0.000028 - momentum: 0.000000
362
+ 2023-10-25 09:02:13,160 epoch 2 - iter 2166/3617 - loss 0.10157426 - time (sec): 136.19 - samples/sec: 1679.24 - lr: 0.000028 - momentum: 0.000000
363
+ 2023-10-25 09:02:35,597 epoch 2 - iter 2527/3617 - loss 0.10001100 - time (sec): 158.63 - samples/sec: 1675.89 - lr: 0.000028 - momentum: 0.000000
364
+ 2023-10-25 09:02:58,307 epoch 2 - iter 2888/3617 - loss 0.09732052 - time (sec): 181.34 - samples/sec: 1677.76 - lr: 0.000027 - momentum: 0.000000
365
+ 2023-10-25 09:03:21,029 epoch 2 - iter 3249/3617 - loss 0.09809576 - time (sec): 204.06 - samples/sec: 1675.59 - lr: 0.000027 - momentum: 0.000000
366
+ 2023-10-25 09:03:43,417 epoch 2 - iter 3610/3617 - loss 0.09810723 - time (sec): 226.45 - samples/sec: 1674.16 - lr: 0.000027 - momentum: 0.000000
367
+ 2023-10-25 09:03:43,852 ----------------------------------------------------------------------------------------------------
368
+ 2023-10-25 09:03:43,852 EPOCH 2 done: loss 0.0980 - lr: 0.000027
369
+ 2023-10-25 09:03:49,086 DEV : loss 0.1498355269432068 - f1-score (micro avg) 0.6537
370
+ 2023-10-25 09:03:49,108 saving best model
371
+ 2023-10-25 09:03:49,728 ----------------------------------------------------------------------------------------------------
372
+ 2023-10-25 09:04:12,340 epoch 3 - iter 361/3617 - loss 0.08371286 - time (sec): 22.61 - samples/sec: 1661.67 - lr: 0.000026 - momentum: 0.000000
373
+ 2023-10-25 09:04:35,198 epoch 3 - iter 722/3617 - loss 0.08266269 - time (sec): 45.47 - samples/sec: 1671.47 - lr: 0.000026 - momentum: 0.000000
374
+ 2023-10-25 09:04:57,535 epoch 3 - iter 1083/3617 - loss 0.07533014 - time (sec): 67.81 - samples/sec: 1676.54 - lr: 0.000026 - momentum: 0.000000
375
+ 2023-10-25 09:05:20,055 epoch 3 - iter 1444/3617 - loss 0.07921444 - time (sec): 90.33 - samples/sec: 1672.99 - lr: 0.000025 - momentum: 0.000000
376
+ 2023-10-25 09:05:42,693 epoch 3 - iter 1805/3617 - loss 0.07689623 - time (sec): 112.96 - samples/sec: 1679.89 - lr: 0.000025 - momentum: 0.000000
377
+ 2023-10-25 09:06:05,757 epoch 3 - iter 2166/3617 - loss 0.07594405 - time (sec): 136.03 - samples/sec: 1684.69 - lr: 0.000025 - momentum: 0.000000
378
+ 2023-10-25 09:06:28,208 epoch 3 - iter 2527/3617 - loss 0.07505941 - time (sec): 158.48 - samples/sec: 1678.13 - lr: 0.000024 - momentum: 0.000000
379
+ 2023-10-25 09:06:51,076 epoch 3 - iter 2888/3617 - loss 0.07488029 - time (sec): 181.35 - samples/sec: 1685.62 - lr: 0.000024 - momentum: 0.000000
380
+ 2023-10-25 09:07:13,857 epoch 3 - iter 3249/3617 - loss 0.07618760 - time (sec): 204.13 - samples/sec: 1680.18 - lr: 0.000024 - momentum: 0.000000
381
+ 2023-10-25 09:07:36,286 epoch 3 - iter 3610/3617 - loss 0.07650149 - time (sec): 226.56 - samples/sec: 1674.18 - lr: 0.000023 - momentum: 0.000000
382
+ 2023-10-25 09:07:36,709 ----------------------------------------------------------------------------------------------------
383
+ 2023-10-25 09:07:36,709 EPOCH 3 done: loss 0.0764 - lr: 0.000023
384
+ 2023-10-25 09:07:41,464 DEV : loss 0.19308863580226898 - f1-score (micro avg) 0.6209
385
+ 2023-10-25 09:07:41,486 ----------------------------------------------------------------------------------------------------
386
+ 2023-10-25 09:08:04,147 epoch 4 - iter 361/3617 - loss 0.04740247 - time (sec): 22.66 - samples/sec: 1676.03 - lr: 0.000023 - momentum: 0.000000
387
+ 2023-10-25 09:08:27,052 epoch 4 - iter 722/3617 - loss 0.04393513 - time (sec): 45.57 - samples/sec: 1694.68 - lr: 0.000023 - momentum: 0.000000
388
+ 2023-10-25 09:08:49,468 epoch 4 - iter 1083/3617 - loss 0.04673719 - time (sec): 67.98 - samples/sec: 1670.64 - lr: 0.000022 - momentum: 0.000000
389
+ 2023-10-25 09:09:12,096 epoch 4 - iter 1444/3617 - loss 0.04771808 - time (sec): 90.61 - samples/sec: 1670.66 - lr: 0.000022 - momentum: 0.000000
390
+ 2023-10-25 09:09:34,752 epoch 4 - iter 1805/3617 - loss 0.04805421 - time (sec): 113.27 - samples/sec: 1672.54 - lr: 0.000022 - momentum: 0.000000
391
+ 2023-10-25 09:09:57,527 epoch 4 - iter 2166/3617 - loss 0.04811747 - time (sec): 136.04 - samples/sec: 1675.32 - lr: 0.000021 - momentum: 0.000000
392
+ 2023-10-25 09:10:20,097 epoch 4 - iter 2527/3617 - loss 0.04985558 - time (sec): 158.61 - samples/sec: 1672.88 - lr: 0.000021 - momentum: 0.000000
393
+ 2023-10-25 09:10:43,113 epoch 4 - iter 2888/3617 - loss 0.04967931 - time (sec): 181.63 - samples/sec: 1666.35 - lr: 0.000021 - momentum: 0.000000
394
+ 2023-10-25 09:11:05,900 epoch 4 - iter 3249/3617 - loss 0.04983072 - time (sec): 204.41 - samples/sec: 1665.34 - lr: 0.000020 - momentum: 0.000000
395
+ 2023-10-25 09:11:28,853 epoch 4 - iter 3610/3617 - loss 0.05188277 - time (sec): 227.37 - samples/sec: 1667.33 - lr: 0.000020 - momentum: 0.000000
396
+ 2023-10-25 09:11:29,293 ----------------------------------------------------------------------------------------------------
397
+ 2023-10-25 09:11:29,293 EPOCH 4 done: loss 0.0518 - lr: 0.000020
398
+ 2023-10-25 09:11:34,065 DEV : loss 0.25538942217826843 - f1-score (micro avg) 0.6376
399
+ 2023-10-25 09:11:34,087 ----------------------------------------------------------------------------------------------------
400
+ 2023-10-25 09:11:56,512 epoch 5 - iter 361/3617 - loss 0.03131284 - time (sec): 22.42 - samples/sec: 1629.91 - lr: 0.000020 - momentum: 0.000000
401
+ 2023-10-25 09:12:19,313 epoch 5 - iter 722/3617 - loss 0.03223206 - time (sec): 45.22 - samples/sec: 1639.25 - lr: 0.000019 - momentum: 0.000000
402
+ 2023-10-25 09:12:42,036 epoch 5 - iter 1083/3617 - loss 0.03088082 - time (sec): 67.95 - samples/sec: 1652.27 - lr: 0.000019 - momentum: 0.000000
403
+ 2023-10-25 09:13:04,677 epoch 5 - iter 1444/3617 - loss 0.03409690 - time (sec): 90.59 - samples/sec: 1655.84 - lr: 0.000019 - momentum: 0.000000
404
+ 2023-10-25 09:13:27,356 epoch 5 - iter 1805/3617 - loss 0.03218071 - time (sec): 113.27 - samples/sec: 1668.62 - lr: 0.000018 - momentum: 0.000000
405
+ 2023-10-25 09:13:49,986 epoch 5 - iter 2166/3617 - loss 0.03391101 - time (sec): 135.90 - samples/sec: 1665.03 - lr: 0.000018 - momentum: 0.000000
406
+ 2023-10-25 09:14:12,624 epoch 5 - iter 2527/3617 - loss 0.03493067 - time (sec): 158.54 - samples/sec: 1662.52 - lr: 0.000018 - momentum: 0.000000
407
+ 2023-10-25 09:14:35,385 epoch 5 - iter 2888/3617 - loss 0.03495628 - time (sec): 181.30 - samples/sec: 1670.98 - lr: 0.000017 - momentum: 0.000000
408
+ 2023-10-25 09:14:58,001 epoch 5 - iter 3249/3617 - loss 0.03497871 - time (sec): 203.91 - samples/sec: 1670.29 - lr: 0.000017 - momentum: 0.000000
409
+ 2023-10-25 09:15:20,904 epoch 5 - iter 3610/3617 - loss 0.03564780 - time (sec): 226.82 - samples/sec: 1672.37 - lr: 0.000017 - momentum: 0.000000
410
+ 2023-10-25 09:15:21,319 ----------------------------------------------------------------------------------------------------
411
+ 2023-10-25 09:15:21,319 EPOCH 5 done: loss 0.0357 - lr: 0.000017
412
+ 2023-10-25 09:15:26,608 DEV : loss 0.3036385476589203 - f1-score (micro avg) 0.6379
413
+ 2023-10-25 09:15:26,630 ----------------------------------------------------------------------------------------------------
414
+ 2023-10-25 09:15:49,295 epoch 6 - iter 361/3617 - loss 0.01822029 - time (sec): 22.66 - samples/sec: 1605.12 - lr: 0.000016 - momentum: 0.000000
415
+ 2023-10-25 09:16:12,087 epoch 6 - iter 722/3617 - loss 0.02217639 - time (sec): 45.46 - samples/sec: 1662.06 - lr: 0.000016 - momentum: 0.000000
416
+ 2023-10-25 09:16:34,918 epoch 6 - iter 1083/3617 - loss 0.02506345 - time (sec): 68.29 - samples/sec: 1664.01 - lr: 0.000016 - momentum: 0.000000
417
+ 2023-10-25 09:16:57,390 epoch 6 - iter 1444/3617 - loss 0.02414606 - time (sec): 90.76 - samples/sec: 1655.24 - lr: 0.000015 - momentum: 0.000000
418
+ 2023-10-25 09:17:20,050 epoch 6 - iter 1805/3617 - loss 0.02424517 - time (sec): 113.42 - samples/sec: 1662.94 - lr: 0.000015 - momentum: 0.000000
419
+ 2023-10-25 09:17:42,507 epoch 6 - iter 2166/3617 - loss 0.02407469 - time (sec): 135.88 - samples/sec: 1663.03 - lr: 0.000015 - momentum: 0.000000
420
+ 2023-10-25 09:18:05,243 epoch 6 - iter 2527/3617 - loss 0.02329897 - time (sec): 158.61 - samples/sec: 1665.13 - lr: 0.000014 - momentum: 0.000000
421
+ 2023-10-25 09:18:28,017 epoch 6 - iter 2888/3617 - loss 0.02317000 - time (sec): 181.39 - samples/sec: 1670.08 - lr: 0.000014 - momentum: 0.000000
422
+ 2023-10-25 09:18:50,676 epoch 6 - iter 3249/3617 - loss 0.02253595 - time (sec): 204.04 - samples/sec: 1670.18 - lr: 0.000014 - momentum: 0.000000
423
+ 2023-10-25 09:19:13,356 epoch 6 - iter 3610/3617 - loss 0.02298512 - time (sec): 226.73 - samples/sec: 1671.45 - lr: 0.000013 - momentum: 0.000000
424
+ 2023-10-25 09:19:13,810 ----------------------------------------------------------------------------------------------------
425
+ 2023-10-25 09:19:13,810 EPOCH 6 done: loss 0.0230 - lr: 0.000013
426
+ 2023-10-25 09:19:19,090 DEV : loss 0.3258330523967743 - f1-score (micro avg) 0.6394
427
+ 2023-10-25 09:19:19,113 ----------------------------------------------------------------------------------------------------
428
+ 2023-10-25 09:19:41,742 epoch 7 - iter 361/3617 - loss 0.01238420 - time (sec): 22.63 - samples/sec: 1691.85 - lr: 0.000013 - momentum: 0.000000
429
+ 2023-10-25 09:20:04,086 epoch 7 - iter 722/3617 - loss 0.01141601 - time (sec): 44.97 - samples/sec: 1678.52 - lr: 0.000013 - momentum: 0.000000
430
+ 2023-10-25 09:20:26,635 epoch 7 - iter 1083/3617 - loss 0.01410956 - time (sec): 67.52 - samples/sec: 1670.11 - lr: 0.000012 - momentum: 0.000000
431
+ 2023-10-25 09:20:49,285 epoch 7 - iter 1444/3617 - loss 0.01436451 - time (sec): 90.17 - samples/sec: 1676.14 - lr: 0.000012 - momentum: 0.000000
432
+ 2023-10-25 09:21:12,335 epoch 7 - iter 1805/3617 - loss 0.01504339 - time (sec): 113.22 - samples/sec: 1693.17 - lr: 0.000012 - momentum: 0.000000
433
+ 2023-10-25 09:21:34,746 epoch 7 - iter 2166/3617 - loss 0.01505583 - time (sec): 135.63 - samples/sec: 1683.15 - lr: 0.000011 - momentum: 0.000000
434
+ 2023-10-25 09:21:57,667 epoch 7 - iter 2527/3617 - loss 0.01548792 - time (sec): 158.55 - samples/sec: 1678.86 - lr: 0.000011 - momentum: 0.000000
435
+ 2023-10-25 09:22:20,310 epoch 7 - iter 2888/3617 - loss 0.01540908 - time (sec): 181.20 - samples/sec: 1677.51 - lr: 0.000011 - momentum: 0.000000
436
+ 2023-10-25 09:22:43,073 epoch 7 - iter 3249/3617 - loss 0.01583643 - time (sec): 203.96 - samples/sec: 1679.41 - lr: 0.000010 - momentum: 0.000000
437
+ 2023-10-25 09:23:05,722 epoch 7 - iter 3610/3617 - loss 0.01543481 - time (sec): 226.61 - samples/sec: 1673.87 - lr: 0.000010 - momentum: 0.000000
438
+ 2023-10-25 09:23:06,127 ----------------------------------------------------------------------------------------------------
439
+ 2023-10-25 09:23:06,128 EPOCH 7 done: loss 0.0155 - lr: 0.000010
440
+ 2023-10-25 09:23:10,894 DEV : loss 0.3687475621700287 - f1-score (micro avg) 0.6512
441
+ 2023-10-25 09:23:10,917 ----------------------------------------------------------------------------------------------------
442
+ 2023-10-25 09:23:34,320 epoch 8 - iter 361/3617 - loss 0.01011873 - time (sec): 23.40 - samples/sec: 1642.59 - lr: 0.000010 - momentum: 0.000000
443
+ 2023-10-25 09:23:57,093 epoch 8 - iter 722/3617 - loss 0.01183084 - time (sec): 46.18 - samples/sec: 1647.32 - lr: 0.000009 - momentum: 0.000000
444
+ 2023-10-25 09:24:19,987 epoch 8 - iter 1083/3617 - loss 0.01114849 - time (sec): 69.07 - samples/sec: 1675.33 - lr: 0.000009 - momentum: 0.000000
445
+ 2023-10-25 09:24:42,267 epoch 8 - iter 1444/3617 - loss 0.01144658 - time (sec): 91.35 - samples/sec: 1671.61 - lr: 0.000009 - momentum: 0.000000
446
+ 2023-10-25 09:25:04,971 epoch 8 - iter 1805/3617 - loss 0.01085694 - time (sec): 114.05 - samples/sec: 1671.04 - lr: 0.000008 - momentum: 0.000000
447
+ 2023-10-25 09:25:27,776 epoch 8 - iter 2166/3617 - loss 0.01113943 - time (sec): 136.86 - samples/sec: 1670.33 - lr: 0.000008 - momentum: 0.000000
448
+ 2023-10-25 09:25:50,272 epoch 8 - iter 2527/3617 - loss 0.01110272 - time (sec): 159.35 - samples/sec: 1665.95 - lr: 0.000008 - momentum: 0.000000
449
+ 2023-10-25 09:26:13,117 epoch 8 - iter 2888/3617 - loss 0.01112695 - time (sec): 182.20 - samples/sec: 1667.86 - lr: 0.000007 - momentum: 0.000000
450
+ 2023-10-25 09:26:35,738 epoch 8 - iter 3249/3617 - loss 0.01071467 - time (sec): 204.82 - samples/sec: 1667.74 - lr: 0.000007 - momentum: 0.000000
451
+ 2023-10-25 09:26:58,274 epoch 8 - iter 3610/3617 - loss 0.01074639 - time (sec): 227.36 - samples/sec: 1668.14 - lr: 0.000007 - momentum: 0.000000
452
+ 2023-10-25 09:26:58,691 ----------------------------------------------------------------------------------------------------
453
+ 2023-10-25 09:26:58,691 EPOCH 8 done: loss 0.0107 - lr: 0.000007
454
+ 2023-10-25 09:27:03,463 DEV : loss 0.38349881768226624 - f1-score (micro avg) 0.6433
455
+ 2023-10-25 09:27:03,486 ----------------------------------------------------------------------------------------------------
456
+ 2023-10-25 09:27:26,470 epoch 9 - iter 361/3617 - loss 0.00556864 - time (sec): 22.98 - samples/sec: 1698.80 - lr: 0.000006 - momentum: 0.000000
457
+ 2023-10-25 09:27:49,214 epoch 9 - iter 722/3617 - loss 0.00783730 - time (sec): 45.73 - samples/sec: 1713.36 - lr: 0.000006 - momentum: 0.000000
458
+ 2023-10-25 09:28:11,732 epoch 9 - iter 1083/3617 - loss 0.00688603 - time (sec): 68.25 - samples/sec: 1699.80 - lr: 0.000006 - momentum: 0.000000
459
+ 2023-10-25 09:28:34,228 epoch 9 - iter 1444/3617 - loss 0.00661452 - time (sec): 90.74 - samples/sec: 1681.63 - lr: 0.000005 - momentum: 0.000000
460
+ 2023-10-25 09:28:57,185 epoch 9 - iter 1805/3617 - loss 0.00671017 - time (sec): 113.70 - samples/sec: 1690.74 - lr: 0.000005 - momentum: 0.000000
461
+ 2023-10-25 09:29:19,774 epoch 9 - iter 2166/3617 - loss 0.00667753 - time (sec): 136.29 - samples/sec: 1681.32 - lr: 0.000005 - momentum: 0.000000
462
+ 2023-10-25 09:29:42,402 epoch 9 - iter 2527/3617 - loss 0.00799751 - time (sec): 158.92 - samples/sec: 1675.07 - lr: 0.000004 - momentum: 0.000000
463
+ 2023-10-25 09:30:05,056 epoch 9 - iter 2888/3617 - loss 0.00813035 - time (sec): 181.57 - samples/sec: 1675.38 - lr: 0.000004 - momentum: 0.000000
464
+ 2023-10-25 09:30:28,208 epoch 9 - iter 3249/3617 - loss 0.00804585 - time (sec): 204.72 - samples/sec: 1670.75 - lr: 0.000004 - momentum: 0.000000
465
+ 2023-10-25 09:30:50,683 epoch 9 - iter 3610/3617 - loss 0.00784812 - time (sec): 227.20 - samples/sec: 1668.02 - lr: 0.000003 - momentum: 0.000000
466
+ 2023-10-25 09:30:51,156 ----------------------------------------------------------------------------------------------------
467
+ 2023-10-25 09:30:51,156 EPOCH 9 done: loss 0.0079 - lr: 0.000003
468
+ 2023-10-25 09:30:55,937 DEV : loss 0.3988388478755951 - f1-score (micro avg) 0.6402
469
+ 2023-10-25 09:30:55,959 ----------------------------------------------------------------------------------------------------
470
+ 2023-10-25 09:31:18,550 epoch 10 - iter 361/3617 - loss 0.00169395 - time (sec): 22.59 - samples/sec: 1691.67 - lr: 0.000003 - momentum: 0.000000
471
+ 2023-10-25 09:31:41,128 epoch 10 - iter 722/3617 - loss 0.00257176 - time (sec): 45.17 - samples/sec: 1691.41 - lr: 0.000003 - momentum: 0.000000
472
+ 2023-10-25 09:32:03,905 epoch 10 - iter 1083/3617 - loss 0.00388498 - time (sec): 67.95 - samples/sec: 1670.61 - lr: 0.000002 - momentum: 0.000000
473
+ 2023-10-25 09:32:26,672 epoch 10 - iter 1444/3617 - loss 0.00415693 - time (sec): 90.71 - samples/sec: 1674.51 - lr: 0.000002 - momentum: 0.000000
474
+ 2023-10-25 09:32:49,198 epoch 10 - iter 1805/3617 - loss 0.00422595 - time (sec): 113.24 - samples/sec: 1665.99 - lr: 0.000002 - momentum: 0.000000
475
+ 2023-10-25 09:33:11,815 epoch 10 - iter 2166/3617 - loss 0.00444188 - time (sec): 135.86 - samples/sec: 1665.22 - lr: 0.000001 - momentum: 0.000000
476
+ 2023-10-25 09:33:34,466 epoch 10 - iter 2527/3617 - loss 0.00456308 - time (sec): 158.51 - samples/sec: 1659.07 - lr: 0.000001 - momentum: 0.000000
477
+ 2023-10-25 09:33:57,358 epoch 10 - iter 2888/3617 - loss 0.00457433 - time (sec): 181.40 - samples/sec: 1663.72 - lr: 0.000001 - momentum: 0.000000
478
+ 2023-10-25 09:34:20,142 epoch 10 - iter 3249/3617 - loss 0.00465404 - time (sec): 204.18 - samples/sec: 1668.71 - lr: 0.000000 - momentum: 0.000000
479
+ 2023-10-25 09:34:42,847 epoch 10 - iter 3610/3617 - loss 0.00478068 - time (sec): 226.89 - samples/sec: 1672.23 - lr: 0.000000 - momentum: 0.000000
480
+ 2023-10-25 09:34:43,247 ----------------------------------------------------------------------------------------------------
481
+ 2023-10-25 09:34:43,247 EPOCH 10 done: loss 0.0048 - lr: 0.000000
482
+ 2023-10-25 09:34:48,560 DEV : loss 0.42030808329582214 - f1-score (micro avg) 0.6507
483
+ 2023-10-25 09:34:49,057 ----------------------------------------------------------------------------------------------------
484
+ 2023-10-25 09:34:49,058 Loading model from best epoch ...
485
+ 2023-10-25 09:34:50,737 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org
486
+ 2023-10-25 09:34:56,439
487
+ Results:
488
+ - F-score (micro) 0.6562
489
+ - F-score (macro) 0.4469
490
+ - Accuracy 0.499
491
+
492
+ By class:
493
+ precision recall f1-score support
494
+
495
+ loc 0.6340 0.8088 0.7108 591
496
+ pers 0.5688 0.7059 0.6300 357
497
+ org 0.0000 0.0000 0.0000 79
498
+
499
+ micro avg 0.6093 0.7108 0.6562 1027
500
+ macro avg 0.4009 0.5049 0.4469 1027
501
+ weighted avg 0.5626 0.7108 0.6280 1027
502
+
503
+ 2023-10-25 09:34:56,439 ----------------------------------------------------------------------------------------------------