Upload ./training.log with huggingface_hub
Browse files- training.log +503 -0
training.log
ADDED
@@ -0,0 +1,503 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-25 17:53:07,735 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-25 17:53:07,736 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): BertLayer(
|
39 |
+
(attention): BertAttention(
|
40 |
+
(self): BertSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): BertSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): BertIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): BertOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): BertLayer(
|
63 |
+
(attention): BertAttention(
|
64 |
+
(self): BertSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): BertSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): BertIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): BertOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): BertLayer(
|
87 |
+
(attention): BertAttention(
|
88 |
+
(self): BertSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): BertSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): BertIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): BertOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): BertLayer(
|
111 |
+
(attention): BertAttention(
|
112 |
+
(self): BertSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): BertSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): BertIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): BertOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): BertLayer(
|
135 |
+
(attention): BertAttention(
|
136 |
+
(self): BertSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): BertSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): BertIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): BertOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): BertLayer(
|
159 |
+
(attention): BertAttention(
|
160 |
+
(self): BertSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): BertSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): BertIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): BertOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): BertLayer(
|
183 |
+
(attention): BertAttention(
|
184 |
+
(self): BertSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): BertSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): BertIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): BertOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): BertLayer(
|
207 |
+
(attention): BertAttention(
|
208 |
+
(self): BertSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): BertSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): BertIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): BertOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): BertLayer(
|
231 |
+
(attention): BertAttention(
|
232 |
+
(self): BertSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): BertSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): BertIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): BertOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): BertLayer(
|
255 |
+
(attention): BertAttention(
|
256 |
+
(self): BertSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): BertSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): BertIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): BertOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): BertLayer(
|
279 |
+
(attention): BertAttention(
|
280 |
+
(self): BertSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): BertSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): BertIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): BertOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(pooler): BertPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
307 |
+
)
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(locked_dropout): LockedDropout(p=0.5)
|
311 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
312 |
+
(loss_function): CrossEntropyLoss()
|
313 |
+
)"
|
314 |
+
2023-10-25 17:53:07,736 ----------------------------------------------------------------------------------------------------
|
315 |
+
2023-10-25 17:53:07,736 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences
|
316 |
+
- NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator
|
317 |
+
2023-10-25 17:53:07,736 ----------------------------------------------------------------------------------------------------
|
318 |
+
2023-10-25 17:53:07,736 Train: 14465 sentences
|
319 |
+
2023-10-25 17:53:07,736 (train_with_dev=False, train_with_test=False)
|
320 |
+
2023-10-25 17:53:07,736 ----------------------------------------------------------------------------------------------------
|
321 |
+
2023-10-25 17:53:07,736 Training Params:
|
322 |
+
2023-10-25 17:53:07,736 - learning_rate: "3e-05"
|
323 |
+
2023-10-25 17:53:07,736 - mini_batch_size: "4"
|
324 |
+
2023-10-25 17:53:07,736 - max_epochs: "10"
|
325 |
+
2023-10-25 17:53:07,736 - shuffle: "True"
|
326 |
+
2023-10-25 17:53:07,736 ----------------------------------------------------------------------------------------------------
|
327 |
+
2023-10-25 17:53:07,737 Plugins:
|
328 |
+
2023-10-25 17:53:07,737 - TensorboardLogger
|
329 |
+
2023-10-25 17:53:07,737 - LinearScheduler | warmup_fraction: '0.1'
|
330 |
+
2023-10-25 17:53:07,737 ----------------------------------------------------------------------------------------------------
|
331 |
+
2023-10-25 17:53:07,737 Final evaluation on model from best epoch (best-model.pt)
|
332 |
+
2023-10-25 17:53:07,737 - metric: "('micro avg', 'f1-score')"
|
333 |
+
2023-10-25 17:53:07,737 ----------------------------------------------------------------------------------------------------
|
334 |
+
2023-10-25 17:53:07,737 Computation:
|
335 |
+
2023-10-25 17:53:07,737 - compute on device: cuda:0
|
336 |
+
2023-10-25 17:53:07,737 - embedding storage: none
|
337 |
+
2023-10-25 17:53:07,737 ----------------------------------------------------------------------------------------------------
|
338 |
+
2023-10-25 17:53:07,737 Model training base path: "hmbench-letemps/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5"
|
339 |
+
2023-10-25 17:53:07,737 ----------------------------------------------------------------------------------------------------
|
340 |
+
2023-10-25 17:53:07,737 ----------------------------------------------------------------------------------------------------
|
341 |
+
2023-10-25 17:53:07,737 Logging anything other than scalars to TensorBoard is currently not supported.
|
342 |
+
2023-10-25 17:53:30,177 epoch 1 - iter 361/3617 - loss 1.04448431 - time (sec): 22.44 - samples/sec: 1725.27 - lr: 0.000003 - momentum: 0.000000
|
343 |
+
2023-10-25 17:53:52,736 epoch 1 - iter 722/3617 - loss 0.62986808 - time (sec): 45.00 - samples/sec: 1706.63 - lr: 0.000006 - momentum: 0.000000
|
344 |
+
2023-10-25 17:54:15,328 epoch 1 - iter 1083/3617 - loss 0.47556906 - time (sec): 67.59 - samples/sec: 1695.64 - lr: 0.000009 - momentum: 0.000000
|
345 |
+
2023-10-25 17:54:37,780 epoch 1 - iter 1444/3617 - loss 0.39046577 - time (sec): 90.04 - samples/sec: 1697.01 - lr: 0.000012 - momentum: 0.000000
|
346 |
+
2023-10-25 17:55:00,290 epoch 1 - iter 1805/3617 - loss 0.33554242 - time (sec): 112.55 - samples/sec: 1688.24 - lr: 0.000015 - momentum: 0.000000
|
347 |
+
2023-10-25 17:55:22,907 epoch 1 - iter 2166/3617 - loss 0.30184490 - time (sec): 135.17 - samples/sec: 1681.32 - lr: 0.000018 - momentum: 0.000000
|
348 |
+
2023-10-25 17:55:45,800 epoch 1 - iter 2527/3617 - loss 0.27353951 - time (sec): 158.06 - samples/sec: 1683.62 - lr: 0.000021 - momentum: 0.000000
|
349 |
+
2023-10-25 17:56:08,540 epoch 1 - iter 2888/3617 - loss 0.25459014 - time (sec): 180.80 - samples/sec: 1674.95 - lr: 0.000024 - momentum: 0.000000
|
350 |
+
2023-10-25 17:56:31,402 epoch 1 - iter 3249/3617 - loss 0.23801927 - time (sec): 203.66 - samples/sec: 1673.95 - lr: 0.000027 - momentum: 0.000000
|
351 |
+
2023-10-25 17:56:54,160 epoch 1 - iter 3610/3617 - loss 0.22532715 - time (sec): 226.42 - samples/sec: 1675.31 - lr: 0.000030 - momentum: 0.000000
|
352 |
+
2023-10-25 17:56:54,573 ----------------------------------------------------------------------------------------------------
|
353 |
+
2023-10-25 17:56:54,573 EPOCH 1 done: loss 0.2251 - lr: 0.000030
|
354 |
+
2023-10-25 17:56:59,104 DEV : loss 0.14202608168125153 - f1-score (micro avg) 0.6083
|
355 |
+
2023-10-25 17:56:59,127 saving best model
|
356 |
+
2023-10-25 17:56:59,676 ----------------------------------------------------------------------------------------------------
|
357 |
+
2023-10-25 17:57:22,365 epoch 2 - iter 361/3617 - loss 0.09325387 - time (sec): 22.69 - samples/sec: 1653.93 - lr: 0.000030 - momentum: 0.000000
|
358 |
+
2023-10-25 17:57:44,957 epoch 2 - iter 722/3617 - loss 0.09875007 - time (sec): 45.28 - samples/sec: 1653.86 - lr: 0.000029 - momentum: 0.000000
|
359 |
+
2023-10-25 17:58:07,620 epoch 2 - iter 1083/3617 - loss 0.09947355 - time (sec): 67.94 - samples/sec: 1662.40 - lr: 0.000029 - momentum: 0.000000
|
360 |
+
2023-10-25 17:58:30,191 epoch 2 - iter 1444/3617 - loss 0.10125065 - time (sec): 90.51 - samples/sec: 1665.36 - lr: 0.000029 - momentum: 0.000000
|
361 |
+
2023-10-25 17:58:53,134 epoch 2 - iter 1805/3617 - loss 0.10017178 - time (sec): 113.46 - samples/sec: 1680.24 - lr: 0.000028 - momentum: 0.000000
|
362 |
+
2023-10-25 17:59:15,812 epoch 2 - iter 2166/3617 - loss 0.10001999 - time (sec): 136.13 - samples/sec: 1678.91 - lr: 0.000028 - momentum: 0.000000
|
363 |
+
2023-10-25 17:59:38,412 epoch 2 - iter 2527/3617 - loss 0.09792164 - time (sec): 158.73 - samples/sec: 1676.16 - lr: 0.000028 - momentum: 0.000000
|
364 |
+
2023-10-25 18:00:01,213 epoch 2 - iter 2888/3617 - loss 0.09669901 - time (sec): 181.54 - samples/sec: 1675.51 - lr: 0.000027 - momentum: 0.000000
|
365 |
+
2023-10-25 18:00:24,017 epoch 2 - iter 3249/3617 - loss 0.09713692 - time (sec): 204.34 - samples/sec: 1674.30 - lr: 0.000027 - momentum: 0.000000
|
366 |
+
2023-10-25 18:00:46,631 epoch 2 - iter 3610/3617 - loss 0.09773196 - time (sec): 226.95 - samples/sec: 1671.96 - lr: 0.000027 - momentum: 0.000000
|
367 |
+
2023-10-25 18:00:47,034 ----------------------------------------------------------------------------------------------------
|
368 |
+
2023-10-25 18:00:47,034 EPOCH 2 done: loss 0.0977 - lr: 0.000027
|
369 |
+
2023-10-25 18:00:51,792 DEV : loss 0.14715531468391418 - f1-score (micro avg) 0.6016
|
370 |
+
2023-10-25 18:00:51,815 ----------------------------------------------------------------------------------------------------
|
371 |
+
2023-10-25 18:01:15,000 epoch 3 - iter 361/3617 - loss 0.06760835 - time (sec): 23.18 - samples/sec: 1667.13 - lr: 0.000026 - momentum: 0.000000
|
372 |
+
2023-10-25 18:01:38,218 epoch 3 - iter 722/3617 - loss 0.06991201 - time (sec): 46.40 - samples/sec: 1723.47 - lr: 0.000026 - momentum: 0.000000
|
373 |
+
2023-10-25 18:02:00,928 epoch 3 - iter 1083/3617 - loss 0.06632920 - time (sec): 69.11 - samples/sec: 1713.65 - lr: 0.000026 - momentum: 0.000000
|
374 |
+
2023-10-25 18:02:23,506 epoch 3 - iter 1444/3617 - loss 0.06914393 - time (sec): 91.69 - samples/sec: 1705.05 - lr: 0.000025 - momentum: 0.000000
|
375 |
+
2023-10-25 18:02:45,976 epoch 3 - iter 1805/3617 - loss 0.07123450 - time (sec): 114.16 - samples/sec: 1692.95 - lr: 0.000025 - momentum: 0.000000
|
376 |
+
2023-10-25 18:03:08,412 epoch 3 - iter 2166/3617 - loss 0.07224670 - time (sec): 136.60 - samples/sec: 1684.65 - lr: 0.000025 - momentum: 0.000000
|
377 |
+
2023-10-25 18:03:30,979 epoch 3 - iter 2527/3617 - loss 0.07309131 - time (sec): 159.16 - samples/sec: 1683.48 - lr: 0.000024 - momentum: 0.000000
|
378 |
+
2023-10-25 18:03:53,575 epoch 3 - iter 2888/3617 - loss 0.07511697 - time (sec): 181.76 - samples/sec: 1677.20 - lr: 0.000024 - momentum: 0.000000
|
379 |
+
2023-10-25 18:04:16,265 epoch 3 - iter 3249/3617 - loss 0.07486815 - time (sec): 204.45 - samples/sec: 1674.48 - lr: 0.000024 - momentum: 0.000000
|
380 |
+
2023-10-25 18:04:38,616 epoch 3 - iter 3610/3617 - loss 0.07515962 - time (sec): 226.80 - samples/sec: 1672.69 - lr: 0.000023 - momentum: 0.000000
|
381 |
+
2023-10-25 18:04:39,041 ----------------------------------------------------------------------------------------------------
|
382 |
+
2023-10-25 18:04:39,041 EPOCH 3 done: loss 0.0751 - lr: 0.000023
|
383 |
+
2023-10-25 18:04:43,797 DEV : loss 0.2039371132850647 - f1-score (micro avg) 0.6501
|
384 |
+
2023-10-25 18:04:43,819 saving best model
|
385 |
+
2023-10-25 18:04:44,590 ----------------------------------------------------------------------------------------------------
|
386 |
+
2023-10-25 18:05:07,373 epoch 4 - iter 361/3617 - loss 0.05450055 - time (sec): 22.78 - samples/sec: 1685.26 - lr: 0.000023 - momentum: 0.000000
|
387 |
+
2023-10-25 18:05:29,930 epoch 4 - iter 722/3617 - loss 0.04868394 - time (sec): 45.34 - samples/sec: 1680.30 - lr: 0.000023 - momentum: 0.000000
|
388 |
+
2023-10-25 18:05:52,692 epoch 4 - iter 1083/3617 - loss 0.04724397 - time (sec): 68.10 - samples/sec: 1692.84 - lr: 0.000022 - momentum: 0.000000
|
389 |
+
2023-10-25 18:06:15,338 epoch 4 - iter 1444/3617 - loss 0.04713960 - time (sec): 90.75 - samples/sec: 1698.77 - lr: 0.000022 - momentum: 0.000000
|
390 |
+
2023-10-25 18:06:37,961 epoch 4 - iter 1805/3617 - loss 0.04948343 - time (sec): 113.37 - samples/sec: 1696.17 - lr: 0.000022 - momentum: 0.000000
|
391 |
+
2023-10-25 18:07:00,499 epoch 4 - iter 2166/3617 - loss 0.04977775 - time (sec): 135.91 - samples/sec: 1685.63 - lr: 0.000021 - momentum: 0.000000
|
392 |
+
2023-10-25 18:07:22,960 epoch 4 - iter 2527/3617 - loss 0.04973117 - time (sec): 158.37 - samples/sec: 1680.12 - lr: 0.000021 - momentum: 0.000000
|
393 |
+
2023-10-25 18:07:45,582 epoch 4 - iter 2888/3617 - loss 0.05015542 - time (sec): 180.99 - samples/sec: 1677.24 - lr: 0.000021 - momentum: 0.000000
|
394 |
+
2023-10-25 18:08:08,593 epoch 4 - iter 3249/3617 - loss 0.05042575 - time (sec): 204.00 - samples/sec: 1670.53 - lr: 0.000020 - momentum: 0.000000
|
395 |
+
2023-10-25 18:08:31,332 epoch 4 - iter 3610/3617 - loss 0.05053351 - time (sec): 226.74 - samples/sec: 1673.42 - lr: 0.000020 - momentum: 0.000000
|
396 |
+
2023-10-25 18:08:31,747 ----------------------------------------------------------------------------------------------------
|
397 |
+
2023-10-25 18:08:31,748 EPOCH 4 done: loss 0.0507 - lr: 0.000020
|
398 |
+
2023-10-25 18:08:36,510 DEV : loss 0.24384552240371704 - f1-score (micro avg) 0.6139
|
399 |
+
2023-10-25 18:08:36,532 ----------------------------------------------------------------------------------------------------
|
400 |
+
2023-10-25 18:08:59,252 epoch 5 - iter 361/3617 - loss 0.03078975 - time (sec): 22.72 - samples/sec: 1723.25 - lr: 0.000020 - momentum: 0.000000
|
401 |
+
2023-10-25 18:09:22,026 epoch 5 - iter 722/3617 - loss 0.03379188 - time (sec): 45.49 - samples/sec: 1704.90 - lr: 0.000019 - momentum: 0.000000
|
402 |
+
2023-10-25 18:09:44,670 epoch 5 - iter 1083/3617 - loss 0.03494238 - time (sec): 68.14 - samples/sec: 1697.74 - lr: 0.000019 - momentum: 0.000000
|
403 |
+
2023-10-25 18:10:06,931 epoch 5 - iter 1444/3617 - loss 0.03589940 - time (sec): 90.40 - samples/sec: 1670.73 - lr: 0.000019 - momentum: 0.000000
|
404 |
+
2023-10-25 18:10:29,820 epoch 5 - iter 1805/3617 - loss 0.03741139 - time (sec): 113.29 - samples/sec: 1679.50 - lr: 0.000018 - momentum: 0.000000
|
405 |
+
2023-10-25 18:10:52,691 epoch 5 - iter 2166/3617 - loss 0.03745558 - time (sec): 136.16 - samples/sec: 1683.12 - lr: 0.000018 - momentum: 0.000000
|
406 |
+
2023-10-25 18:11:15,175 epoch 5 - iter 2527/3617 - loss 0.03750218 - time (sec): 158.64 - samples/sec: 1674.48 - lr: 0.000018 - momentum: 0.000000
|
407 |
+
2023-10-25 18:11:37,722 epoch 5 - iter 2888/3617 - loss 0.03678568 - time (sec): 181.19 - samples/sec: 1672.19 - lr: 0.000017 - momentum: 0.000000
|
408 |
+
2023-10-25 18:12:00,225 epoch 5 - iter 3249/3617 - loss 0.03673079 - time (sec): 203.69 - samples/sec: 1666.92 - lr: 0.000017 - momentum: 0.000000
|
409 |
+
2023-10-25 18:12:23,199 epoch 5 - iter 3610/3617 - loss 0.03582200 - time (sec): 226.67 - samples/sec: 1674.22 - lr: 0.000017 - momentum: 0.000000
|
410 |
+
2023-10-25 18:12:23,601 ----------------------------------------------------------------------------------------------------
|
411 |
+
2023-10-25 18:12:23,601 EPOCH 5 done: loss 0.0358 - lr: 0.000017
|
412 |
+
2023-10-25 18:12:28,874 DEV : loss 0.29047203063964844 - f1-score (micro avg) 0.6375
|
413 |
+
2023-10-25 18:12:28,897 ----------------------------------------------------------------------------------------------------
|
414 |
+
2023-10-25 18:12:51,381 epoch 6 - iter 361/3617 - loss 0.02612742 - time (sec): 22.48 - samples/sec: 1642.43 - lr: 0.000016 - momentum: 0.000000
|
415 |
+
2023-10-25 18:13:13,926 epoch 6 - iter 722/3617 - loss 0.02633927 - time (sec): 45.03 - samples/sec: 1658.37 - lr: 0.000016 - momentum: 0.000000
|
416 |
+
2023-10-25 18:13:36,722 epoch 6 - iter 1083/3617 - loss 0.02499591 - time (sec): 67.82 - samples/sec: 1674.19 - lr: 0.000016 - momentum: 0.000000
|
417 |
+
2023-10-25 18:13:59,270 epoch 6 - iter 1444/3617 - loss 0.02561653 - time (sec): 90.37 - samples/sec: 1675.88 - lr: 0.000015 - momentum: 0.000000
|
418 |
+
2023-10-25 18:14:22,086 epoch 6 - iter 1805/3617 - loss 0.02554121 - time (sec): 113.19 - samples/sec: 1672.16 - lr: 0.000015 - momentum: 0.000000
|
419 |
+
2023-10-25 18:14:44,503 epoch 6 - iter 2166/3617 - loss 0.02594605 - time (sec): 135.61 - samples/sec: 1667.09 - lr: 0.000015 - momentum: 0.000000
|
420 |
+
2023-10-25 18:15:06,952 epoch 6 - iter 2527/3617 - loss 0.02566906 - time (sec): 158.05 - samples/sec: 1662.64 - lr: 0.000014 - momentum: 0.000000
|
421 |
+
2023-10-25 18:15:29,691 epoch 6 - iter 2888/3617 - loss 0.02638375 - time (sec): 180.79 - samples/sec: 1669.32 - lr: 0.000014 - momentum: 0.000000
|
422 |
+
2023-10-25 18:15:52,576 epoch 6 - iter 3249/3617 - loss 0.02624045 - time (sec): 203.68 - samples/sec: 1673.50 - lr: 0.000014 - momentum: 0.000000
|
423 |
+
2023-10-25 18:16:15,346 epoch 6 - iter 3610/3617 - loss 0.02618026 - time (sec): 226.45 - samples/sec: 1674.81 - lr: 0.000013 - momentum: 0.000000
|
424 |
+
2023-10-25 18:16:15,770 ----------------------------------------------------------------------------------------------------
|
425 |
+
2023-10-25 18:16:15,771 EPOCH 6 done: loss 0.0261 - lr: 0.000013
|
426 |
+
2023-10-25 18:16:21,044 DEV : loss 0.35754987597465515 - f1-score (micro avg) 0.6486
|
427 |
+
2023-10-25 18:16:21,067 ----------------------------------------------------------------------------------------------------
|
428 |
+
2023-10-25 18:16:43,741 epoch 7 - iter 361/3617 - loss 0.02669619 - time (sec): 22.67 - samples/sec: 1694.80 - lr: 0.000013 - momentum: 0.000000
|
429 |
+
2023-10-25 18:17:06,457 epoch 7 - iter 722/3617 - loss 0.02133193 - time (sec): 45.39 - samples/sec: 1690.52 - lr: 0.000013 - momentum: 0.000000
|
430 |
+
2023-10-25 18:17:29,252 epoch 7 - iter 1083/3617 - loss 0.01919200 - time (sec): 68.18 - samples/sec: 1696.94 - lr: 0.000012 - momentum: 0.000000
|
431 |
+
2023-10-25 18:17:51,921 epoch 7 - iter 1444/3617 - loss 0.01837169 - time (sec): 90.85 - samples/sec: 1700.41 - lr: 0.000012 - momentum: 0.000000
|
432 |
+
2023-10-25 18:18:14,289 epoch 7 - iter 1805/3617 - loss 0.01828680 - time (sec): 113.22 - samples/sec: 1683.38 - lr: 0.000012 - momentum: 0.000000
|
433 |
+
2023-10-25 18:18:36,956 epoch 7 - iter 2166/3617 - loss 0.01791469 - time (sec): 135.89 - samples/sec: 1672.40 - lr: 0.000011 - momentum: 0.000000
|
434 |
+
2023-10-25 18:18:59,536 epoch 7 - iter 2527/3617 - loss 0.01755958 - time (sec): 158.47 - samples/sec: 1666.66 - lr: 0.000011 - momentum: 0.000000
|
435 |
+
2023-10-25 18:19:22,334 epoch 7 - iter 2888/3617 - loss 0.01737112 - time (sec): 181.27 - samples/sec: 1667.36 - lr: 0.000011 - momentum: 0.000000
|
436 |
+
2023-10-25 18:19:44,988 epoch 7 - iter 3249/3617 - loss 0.01742728 - time (sec): 203.92 - samples/sec: 1671.26 - lr: 0.000010 - momentum: 0.000000
|
437 |
+
2023-10-25 18:20:07,652 epoch 7 - iter 3610/3617 - loss 0.01735064 - time (sec): 226.58 - samples/sec: 1673.83 - lr: 0.000010 - momentum: 0.000000
|
438 |
+
2023-10-25 18:20:08,070 ----------------------------------------------------------------------------------------------------
|
439 |
+
2023-10-25 18:20:08,070 EPOCH 7 done: loss 0.0174 - lr: 0.000010
|
440 |
+
2023-10-25 18:20:13,372 DEV : loss 0.3536568582057953 - f1-score (micro avg) 0.6385
|
441 |
+
2023-10-25 18:20:13,396 ----------------------------------------------------------------------------------------------------
|
442 |
+
2023-10-25 18:20:35,975 epoch 8 - iter 361/3617 - loss 0.01206039 - time (sec): 22.58 - samples/sec: 1635.31 - lr: 0.000010 - momentum: 0.000000
|
443 |
+
2023-10-25 18:20:58,625 epoch 8 - iter 722/3617 - loss 0.01278203 - time (sec): 45.23 - samples/sec: 1648.62 - lr: 0.000009 - momentum: 0.000000
|
444 |
+
2023-10-25 18:21:21,240 epoch 8 - iter 1083/3617 - loss 0.01364976 - time (sec): 67.84 - samples/sec: 1649.06 - lr: 0.000009 - momentum: 0.000000
|
445 |
+
2023-10-25 18:21:43,895 epoch 8 - iter 1444/3617 - loss 0.01307669 - time (sec): 90.50 - samples/sec: 1654.06 - lr: 0.000009 - momentum: 0.000000
|
446 |
+
2023-10-25 18:22:06,544 epoch 8 - iter 1805/3617 - loss 0.01174791 - time (sec): 113.15 - samples/sec: 1658.98 - lr: 0.000008 - momentum: 0.000000
|
447 |
+
2023-10-25 18:22:29,142 epoch 8 - iter 2166/3617 - loss 0.01152362 - time (sec): 135.75 - samples/sec: 1658.48 - lr: 0.000008 - momentum: 0.000000
|
448 |
+
2023-10-25 18:22:51,686 epoch 8 - iter 2527/3617 - loss 0.01119897 - time (sec): 158.29 - samples/sec: 1659.80 - lr: 0.000008 - momentum: 0.000000
|
449 |
+
2023-10-25 18:23:14,109 epoch 8 - iter 2888/3617 - loss 0.01063586 - time (sec): 180.71 - samples/sec: 1657.02 - lr: 0.000007 - momentum: 0.000000
|
450 |
+
2023-10-25 18:23:37,077 epoch 8 - iter 3249/3617 - loss 0.01119434 - time (sec): 203.68 - samples/sec: 1663.50 - lr: 0.000007 - momentum: 0.000000
|
451 |
+
2023-10-25 18:24:00,281 epoch 8 - iter 3610/3617 - loss 0.01118139 - time (sec): 226.88 - samples/sec: 1671.90 - lr: 0.000007 - momentum: 0.000000
|
452 |
+
2023-10-25 18:24:00,698 ----------------------------------------------------------------------------------------------------
|
453 |
+
2023-10-25 18:24:00,698 EPOCH 8 done: loss 0.0112 - lr: 0.000007
|
454 |
+
2023-10-25 18:24:06,004 DEV : loss 0.37936946749687195 - f1-score (micro avg) 0.6465
|
455 |
+
2023-10-25 18:24:06,027 ----------------------------------------------------------------------------------------------------
|
456 |
+
2023-10-25 18:24:28,653 epoch 9 - iter 361/3617 - loss 0.00453700 - time (sec): 22.62 - samples/sec: 1683.71 - lr: 0.000006 - momentum: 0.000000
|
457 |
+
2023-10-25 18:24:51,313 epoch 9 - iter 722/3617 - loss 0.00589753 - time (sec): 45.29 - samples/sec: 1687.02 - lr: 0.000006 - momentum: 0.000000
|
458 |
+
2023-10-25 18:25:14,005 epoch 9 - iter 1083/3617 - loss 0.00678198 - time (sec): 67.98 - samples/sec: 1685.07 - lr: 0.000006 - momentum: 0.000000
|
459 |
+
2023-10-25 18:25:36,711 epoch 9 - iter 1444/3617 - loss 0.00698786 - time (sec): 90.68 - samples/sec: 1676.57 - lr: 0.000005 - momentum: 0.000000
|
460 |
+
2023-10-25 18:25:59,553 epoch 9 - iter 1805/3617 - loss 0.00683517 - time (sec): 113.52 - samples/sec: 1676.20 - lr: 0.000005 - momentum: 0.000000
|
461 |
+
2023-10-25 18:26:22,155 epoch 9 - iter 2166/3617 - loss 0.00688052 - time (sec): 136.13 - samples/sec: 1673.27 - lr: 0.000005 - momentum: 0.000000
|
462 |
+
2023-10-25 18:26:44,919 epoch 9 - iter 2527/3617 - loss 0.00701541 - time (sec): 158.89 - samples/sec: 1669.59 - lr: 0.000004 - momentum: 0.000000
|
463 |
+
2023-10-25 18:27:07,409 epoch 9 - iter 2888/3617 - loss 0.00693063 - time (sec): 181.38 - samples/sec: 1666.37 - lr: 0.000004 - momentum: 0.000000
|
464 |
+
2023-10-25 18:27:29,896 epoch 9 - iter 3249/3617 - loss 0.00674220 - time (sec): 203.87 - samples/sec: 1666.51 - lr: 0.000004 - momentum: 0.000000
|
465 |
+
2023-10-25 18:27:52,714 epoch 9 - iter 3610/3617 - loss 0.00681525 - time (sec): 226.69 - samples/sec: 1672.04 - lr: 0.000003 - momentum: 0.000000
|
466 |
+
2023-10-25 18:27:53,186 ----------------------------------------------------------------------------------------------------
|
467 |
+
2023-10-25 18:27:53,186 EPOCH 9 done: loss 0.0068 - lr: 0.000003
|
468 |
+
2023-10-25 18:27:57,959 DEV : loss 0.41782665252685547 - f1-score (micro avg) 0.6447
|
469 |
+
2023-10-25 18:27:57,982 ----------------------------------------------------------------------------------------------------
|
470 |
+
2023-10-25 18:28:21,037 epoch 10 - iter 361/3617 - loss 0.00866093 - time (sec): 23.05 - samples/sec: 1651.05 - lr: 0.000003 - momentum: 0.000000
|
471 |
+
2023-10-25 18:28:43,699 epoch 10 - iter 722/3617 - loss 0.00532429 - time (sec): 45.72 - samples/sec: 1676.97 - lr: 0.000003 - momentum: 0.000000
|
472 |
+
2023-10-25 18:29:06,533 epoch 10 - iter 1083/3617 - loss 0.00622948 - time (sec): 68.55 - samples/sec: 1677.53 - lr: 0.000002 - momentum: 0.000000
|
473 |
+
2023-10-25 18:29:29,165 epoch 10 - iter 1444/3617 - loss 0.00568970 - time (sec): 91.18 - samples/sec: 1669.35 - lr: 0.000002 - momentum: 0.000000
|
474 |
+
2023-10-25 18:29:51,935 epoch 10 - iter 1805/3617 - loss 0.00558160 - time (sec): 113.95 - samples/sec: 1675.59 - lr: 0.000002 - momentum: 0.000000
|
475 |
+
2023-10-25 18:30:14,674 epoch 10 - iter 2166/3617 - loss 0.00514416 - time (sec): 136.69 - samples/sec: 1674.83 - lr: 0.000001 - momentum: 0.000000
|
476 |
+
2023-10-25 18:30:37,246 epoch 10 - iter 2527/3617 - loss 0.00503834 - time (sec): 159.26 - samples/sec: 1670.17 - lr: 0.000001 - momentum: 0.000000
|
477 |
+
2023-10-25 18:30:59,921 epoch 10 - iter 2888/3617 - loss 0.00495744 - time (sec): 181.94 - samples/sec: 1672.40 - lr: 0.000001 - momentum: 0.000000
|
478 |
+
2023-10-25 18:31:22,734 epoch 10 - iter 3249/3617 - loss 0.00479787 - time (sec): 204.75 - samples/sec: 1675.27 - lr: 0.000000 - momentum: 0.000000
|
479 |
+
2023-10-25 18:31:45,145 epoch 10 - iter 3610/3617 - loss 0.00477649 - time (sec): 227.16 - samples/sec: 1669.56 - lr: 0.000000 - momentum: 0.000000
|
480 |
+
2023-10-25 18:31:45,583 ----------------------------------------------------------------------------------------------------
|
481 |
+
2023-10-25 18:31:45,583 EPOCH 10 done: loss 0.0048 - lr: 0.000000
|
482 |
+
2023-10-25 18:31:50,356 DEV : loss 0.416111558675766 - f1-score (micro avg) 0.6427
|
483 |
+
2023-10-25 18:31:50,932 ----------------------------------------------------------------------------------------------------
|
484 |
+
2023-10-25 18:31:50,933 Loading model from best epoch ...
|
485 |
+
2023-10-25 18:31:52,701 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org
|
486 |
+
2023-10-25 18:31:58,354
|
487 |
+
Results:
|
488 |
+
- F-score (micro) 0.6515
|
489 |
+
- F-score (macro) 0.448
|
490 |
+
- Accuracy 0.4966
|
491 |
+
|
492 |
+
By class:
|
493 |
+
precision recall f1-score support
|
494 |
+
|
495 |
+
loc 0.6294 0.7817 0.6974 591
|
496 |
+
pers 0.5663 0.7535 0.6466 357
|
497 |
+
org 0.0000 0.0000 0.0000 79
|
498 |
+
|
499 |
+
micro avg 0.6007 0.7118 0.6515 1027
|
500 |
+
macro avg 0.3986 0.5117 0.4480 1027
|
501 |
+
weighted avg 0.5591 0.7118 0.6261 1027
|
502 |
+
|
503 |
+
2023-10-25 18:31:58,354 ----------------------------------------------------------------------------------------------------
|