readme: add initial version of model card
Browse filesHey,
this commit adds the initial version of model card.
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: fr
|
3 |
+
license: mit
|
4 |
+
tags:
|
5 |
+
- flair
|
6 |
+
- token-classification
|
7 |
+
- sequence-tagger-model
|
8 |
+
base_model: dbmdz/bert-tiny-historic-multilingual-cased
|
9 |
+
widget:
|
10 |
+
- text: 'Parmi les remèdes recommandés par la Société , il faut mentionner celui que
|
11 |
+
M . Schatzmann , de Lausanne , a proposé :'
|
12 |
+
---
|
13 |
+
|
14 |
+
# Fine-tuned Flair Model on LeTemps French NER Dataset (HIPE-2022)
|
15 |
+
|
16 |
+
This Flair model was fine-tuned on the
|
17 |
+
[LeTemps French](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-letemps.md)
|
18 |
+
NER Dataset using hmBERT Tiny as backbone LM.
|
19 |
+
|
20 |
+
The LeTemps dataset consists of NE-annotated historical French newspaper articles from mid-19C to mid 20C.
|
21 |
+
|
22 |
+
The following NEs were annotated: `loc`, `org` and `pers`.
|
23 |
+
|
24 |
+
# Results
|
25 |
+
|
26 |
+
We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration:
|
27 |
+
|
28 |
+
* Batch Sizes: `[4, 8]`
|
29 |
+
* Learning Rates: `[5e-05, 3e-05]`
|
30 |
+
|
31 |
+
And report micro F1-score on development set:
|
32 |
+
|
33 |
+
| Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average |
|
34 |
+
|-------------------|--------------|--------------|-----------------|--------------|--------------|-----------------|
|
35 |
+
| `bs4-e10-lr5e-05` | [0.5297][1] | [0.5073][2] | [0.5106][3] | [0.5111][4] | [0.5282][5] | 0.5174 ± 0.0107 |
|
36 |
+
| `bs4-e10-lr3e-05` | [0.5012][6] | [0.4703][7] | [**0.5019**][8] | [0.4857][9] | [0.5072][10] | 0.4933 ± 0.0151 |
|
37 |
+
| `bs8-e10-lr5e-05` | [0.5027][11] | [0.4727][12] | [0.5021][13] | [0.4912][14] | [0.4733][15] | 0.4884 ± 0.0148 |
|
38 |
+
| `bs8-e10-lr3e-05` | [0.489][16] | [0.4226][17] | [0.4656][18] | [0.4744][19] | [0.4511][20] | 0.4605 ± 0.0253 |
|
39 |
+
|
40 |
+
[1]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
|
41 |
+
[2]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
|
42 |
+
[3]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
|
43 |
+
[4]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
|
44 |
+
[5]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
|
45 |
+
[6]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
|
46 |
+
[7]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
|
47 |
+
[8]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
|
48 |
+
[9]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
|
49 |
+
[10]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
|
50 |
+
[11]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
|
51 |
+
[12]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
|
52 |
+
[13]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
|
53 |
+
[14]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
|
54 |
+
[15]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
|
55 |
+
[16]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
|
56 |
+
[17]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
|
57 |
+
[18]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
|
58 |
+
[19]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
|
59 |
+
[20]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
|
60 |
+
|
61 |
+
The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub.
|
62 |
+
|
63 |
+
More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench).
|
64 |
+
|
65 |
+
# Acknowledgements
|
66 |
+
|
67 |
+
We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and
|
68 |
+
[Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models.
|
69 |
+
|
70 |
+
Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC).
|
71 |
+
Many Thanks for providing access to the TPUs ❤️
|