File size: 24,268 Bytes
29e9179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
2023-10-25 18:20:32,214 ----------------------------------------------------------------------------------------------------
2023-10-25 18:20:32,215 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(64001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=17, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-25 18:20:32,216 ----------------------------------------------------------------------------------------------------
2023-10-25 18:20:32,216 MultiCorpus: 7142 train + 698 dev + 2570 test sentences
 - NER_HIPE_2022 Corpus: 7142 train + 698 dev + 2570 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/fr/with_doc_seperator
2023-10-25 18:20:32,216 ----------------------------------------------------------------------------------------------------
2023-10-25 18:20:32,216 Train:  7142 sentences
2023-10-25 18:20:32,216         (train_with_dev=False, train_with_test=False)
2023-10-25 18:20:32,216 ----------------------------------------------------------------------------------------------------
2023-10-25 18:20:32,216 Training Params:
2023-10-25 18:20:32,216  - learning_rate: "3e-05" 
2023-10-25 18:20:32,216  - mini_batch_size: "4"
2023-10-25 18:20:32,216  - max_epochs: "10"
2023-10-25 18:20:32,216  - shuffle: "True"
2023-10-25 18:20:32,216 ----------------------------------------------------------------------------------------------------
2023-10-25 18:20:32,216 Plugins:
2023-10-25 18:20:32,216  - TensorboardLogger
2023-10-25 18:20:32,216  - LinearScheduler | warmup_fraction: '0.1'
2023-10-25 18:20:32,216 ----------------------------------------------------------------------------------------------------
2023-10-25 18:20:32,216 Final evaluation on model from best epoch (best-model.pt)
2023-10-25 18:20:32,216  - metric: "('micro avg', 'f1-score')"
2023-10-25 18:20:32,216 ----------------------------------------------------------------------------------------------------
2023-10-25 18:20:32,216 Computation:
2023-10-25 18:20:32,216  - compute on device: cuda:0
2023-10-25 18:20:32,216  - embedding storage: none
2023-10-25 18:20:32,217 ----------------------------------------------------------------------------------------------------
2023-10-25 18:20:32,217 Model training base path: "hmbench-newseye/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5"
2023-10-25 18:20:32,217 ----------------------------------------------------------------------------------------------------
2023-10-25 18:20:32,217 ----------------------------------------------------------------------------------------------------
2023-10-25 18:20:32,217 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-25 18:20:41,829 epoch 1 - iter 178/1786 - loss 1.62894423 - time (sec): 9.61 - samples/sec: 2374.31 - lr: 0.000003 - momentum: 0.000000
2023-10-25 18:20:51,370 epoch 1 - iter 356/1786 - loss 1.05338819 - time (sec): 19.15 - samples/sec: 2440.03 - lr: 0.000006 - momentum: 0.000000
2023-10-25 18:21:00,897 epoch 1 - iter 534/1786 - loss 0.81520377 - time (sec): 28.68 - samples/sec: 2483.98 - lr: 0.000009 - momentum: 0.000000
2023-10-25 18:21:10,205 epoch 1 - iter 712/1786 - loss 0.65815637 - time (sec): 37.99 - samples/sec: 2589.41 - lr: 0.000012 - momentum: 0.000000
2023-10-25 18:21:18,795 epoch 1 - iter 890/1786 - loss 0.56620539 - time (sec): 46.58 - samples/sec: 2635.83 - lr: 0.000015 - momentum: 0.000000
2023-10-25 18:21:27,476 epoch 1 - iter 1068/1786 - loss 0.50136101 - time (sec): 55.26 - samples/sec: 2648.12 - lr: 0.000018 - momentum: 0.000000
2023-10-25 18:21:36,384 epoch 1 - iter 1246/1786 - loss 0.45154314 - time (sec): 64.17 - samples/sec: 2662.89 - lr: 0.000021 - momentum: 0.000000
2023-10-25 18:21:45,468 epoch 1 - iter 1424/1786 - loss 0.41094756 - time (sec): 73.25 - samples/sec: 2680.96 - lr: 0.000024 - momentum: 0.000000
2023-10-25 18:21:54,948 epoch 1 - iter 1602/1786 - loss 0.37891662 - time (sec): 82.73 - samples/sec: 2692.41 - lr: 0.000027 - momentum: 0.000000
2023-10-25 18:22:04,798 epoch 1 - iter 1780/1786 - loss 0.35716707 - time (sec): 92.58 - samples/sec: 2677.72 - lr: 0.000030 - momentum: 0.000000
2023-10-25 18:22:05,143 ----------------------------------------------------------------------------------------------------
2023-10-25 18:22:05,143 EPOCH 1 done: loss 0.3565 - lr: 0.000030
2023-10-25 18:22:08,918 DEV : loss 0.10421743243932724 - f1-score (micro avg)  0.7273
2023-10-25 18:22:08,940 saving best model
2023-10-25 18:22:09,391 ----------------------------------------------------------------------------------------------------
2023-10-25 18:22:19,092 epoch 2 - iter 178/1786 - loss 0.11382450 - time (sec): 9.70 - samples/sec: 2665.09 - lr: 0.000030 - momentum: 0.000000
2023-10-25 18:22:28,505 epoch 2 - iter 356/1786 - loss 0.11818253 - time (sec): 19.11 - samples/sec: 2534.69 - lr: 0.000029 - momentum: 0.000000
2023-10-25 18:22:37,505 epoch 2 - iter 534/1786 - loss 0.11752290 - time (sec): 28.11 - samples/sec: 2607.90 - lr: 0.000029 - momentum: 0.000000
2023-10-25 18:22:46,687 epoch 2 - iter 712/1786 - loss 0.11710291 - time (sec): 37.29 - samples/sec: 2656.23 - lr: 0.000029 - momentum: 0.000000
2023-10-25 18:22:55,874 epoch 2 - iter 890/1786 - loss 0.11761515 - time (sec): 46.48 - samples/sec: 2626.69 - lr: 0.000028 - momentum: 0.000000
2023-10-25 18:23:04,857 epoch 2 - iter 1068/1786 - loss 0.11880463 - time (sec): 55.46 - samples/sec: 2647.77 - lr: 0.000028 - momentum: 0.000000
2023-10-25 18:23:13,642 epoch 2 - iter 1246/1786 - loss 0.11830693 - time (sec): 64.25 - samples/sec: 2669.76 - lr: 0.000028 - momentum: 0.000000
2023-10-25 18:23:22,746 epoch 2 - iter 1424/1786 - loss 0.11678831 - time (sec): 73.35 - samples/sec: 2706.42 - lr: 0.000027 - momentum: 0.000000
2023-10-25 18:23:31,977 epoch 2 - iter 1602/1786 - loss 0.11600197 - time (sec): 82.58 - samples/sec: 2700.85 - lr: 0.000027 - momentum: 0.000000
2023-10-25 18:23:41,217 epoch 2 - iter 1780/1786 - loss 0.11609587 - time (sec): 91.82 - samples/sec: 2701.26 - lr: 0.000027 - momentum: 0.000000
2023-10-25 18:23:41,525 ----------------------------------------------------------------------------------------------------
2023-10-25 18:23:41,526 EPOCH 2 done: loss 0.1160 - lr: 0.000027
2023-10-25 18:23:46,583 DEV : loss 0.10009025037288666 - f1-score (micro avg)  0.7704
2023-10-25 18:23:46,604 saving best model
2023-10-25 18:23:47,260 ----------------------------------------------------------------------------------------------------
2023-10-25 18:23:56,854 epoch 3 - iter 178/1786 - loss 0.06189937 - time (sec): 9.59 - samples/sec: 2612.13 - lr: 0.000026 - momentum: 0.000000
2023-10-25 18:24:06,469 epoch 3 - iter 356/1786 - loss 0.06991416 - time (sec): 19.21 - samples/sec: 2562.50 - lr: 0.000026 - momentum: 0.000000
2023-10-25 18:24:15,985 epoch 3 - iter 534/1786 - loss 0.07505640 - time (sec): 28.72 - samples/sec: 2562.39 - lr: 0.000026 - momentum: 0.000000
2023-10-25 18:24:25,614 epoch 3 - iter 712/1786 - loss 0.07238654 - time (sec): 38.35 - samples/sec: 2574.30 - lr: 0.000025 - momentum: 0.000000
2023-10-25 18:24:35,379 epoch 3 - iter 890/1786 - loss 0.07251223 - time (sec): 48.12 - samples/sec: 2571.82 - lr: 0.000025 - momentum: 0.000000
2023-10-25 18:24:45,040 epoch 3 - iter 1068/1786 - loss 0.07322538 - time (sec): 57.78 - samples/sec: 2580.46 - lr: 0.000025 - momentum: 0.000000
2023-10-25 18:24:54,249 epoch 3 - iter 1246/1786 - loss 0.07152561 - time (sec): 66.98 - samples/sec: 2609.81 - lr: 0.000024 - momentum: 0.000000
2023-10-25 18:25:03,582 epoch 3 - iter 1424/1786 - loss 0.07161969 - time (sec): 76.32 - samples/sec: 2579.33 - lr: 0.000024 - momentum: 0.000000
2023-10-25 18:25:12,455 epoch 3 - iter 1602/1786 - loss 0.07144466 - time (sec): 85.19 - samples/sec: 2609.06 - lr: 0.000024 - momentum: 0.000000
2023-10-25 18:25:21,964 epoch 3 - iter 1780/1786 - loss 0.07137444 - time (sec): 94.70 - samples/sec: 2618.28 - lr: 0.000023 - momentum: 0.000000
2023-10-25 18:25:22,284 ----------------------------------------------------------------------------------------------------
2023-10-25 18:25:22,284 EPOCH 3 done: loss 0.0713 - lr: 0.000023
2023-10-25 18:25:27,382 DEV : loss 0.13084866106510162 - f1-score (micro avg)  0.7918
2023-10-25 18:25:27,404 saving best model
2023-10-25 18:25:28,076 ----------------------------------------------------------------------------------------------------
2023-10-25 18:25:36,796 epoch 4 - iter 178/1786 - loss 0.04603763 - time (sec): 8.72 - samples/sec: 2822.79 - lr: 0.000023 - momentum: 0.000000
2023-10-25 18:25:45,700 epoch 4 - iter 356/1786 - loss 0.04595061 - time (sec): 17.62 - samples/sec: 2858.45 - lr: 0.000023 - momentum: 0.000000
2023-10-25 18:25:54,721 epoch 4 - iter 534/1786 - loss 0.05049014 - time (sec): 26.64 - samples/sec: 2796.43 - lr: 0.000022 - momentum: 0.000000
2023-10-25 18:26:04,026 epoch 4 - iter 712/1786 - loss 0.05319326 - time (sec): 35.95 - samples/sec: 2750.89 - lr: 0.000022 - momentum: 0.000000
2023-10-25 18:26:13,466 epoch 4 - iter 890/1786 - loss 0.05285730 - time (sec): 45.39 - samples/sec: 2713.26 - lr: 0.000022 - momentum: 0.000000
2023-10-25 18:26:22,918 epoch 4 - iter 1068/1786 - loss 0.05374856 - time (sec): 54.84 - samples/sec: 2711.40 - lr: 0.000021 - momentum: 0.000000
2023-10-25 18:26:32,404 epoch 4 - iter 1246/1786 - loss 0.05460603 - time (sec): 64.33 - samples/sec: 2687.26 - lr: 0.000021 - momentum: 0.000000
2023-10-25 18:26:42,081 epoch 4 - iter 1424/1786 - loss 0.05410043 - time (sec): 74.00 - samples/sec: 2681.28 - lr: 0.000021 - momentum: 0.000000
2023-10-25 18:26:51,822 epoch 4 - iter 1602/1786 - loss 0.05349229 - time (sec): 83.74 - samples/sec: 2668.08 - lr: 0.000020 - momentum: 0.000000
2023-10-25 18:27:01,217 epoch 4 - iter 1780/1786 - loss 0.05316503 - time (sec): 93.14 - samples/sec: 2663.63 - lr: 0.000020 - momentum: 0.000000
2023-10-25 18:27:01,526 ----------------------------------------------------------------------------------------------------
2023-10-25 18:27:01,527 EPOCH 4 done: loss 0.0532 - lr: 0.000020
2023-10-25 18:27:06,049 DEV : loss 0.16789670288562775 - f1-score (micro avg)  0.7829
2023-10-25 18:27:06,070 ----------------------------------------------------------------------------------------------------
2023-10-25 18:27:15,697 epoch 5 - iter 178/1786 - loss 0.05389475 - time (sec): 9.63 - samples/sec: 2455.06 - lr: 0.000020 - momentum: 0.000000
2023-10-25 18:27:25,190 epoch 5 - iter 356/1786 - loss 0.04260056 - time (sec): 19.12 - samples/sec: 2632.79 - lr: 0.000019 - momentum: 0.000000
2023-10-25 18:27:34,006 epoch 5 - iter 534/1786 - loss 0.04052769 - time (sec): 27.93 - samples/sec: 2688.86 - lr: 0.000019 - momentum: 0.000000
2023-10-25 18:27:43,195 epoch 5 - iter 712/1786 - loss 0.04001294 - time (sec): 37.12 - samples/sec: 2703.06 - lr: 0.000019 - momentum: 0.000000
2023-10-25 18:27:52,669 epoch 5 - iter 890/1786 - loss 0.03975722 - time (sec): 46.60 - samples/sec: 2699.77 - lr: 0.000018 - momentum: 0.000000
2023-10-25 18:28:02,256 epoch 5 - iter 1068/1786 - loss 0.03974050 - time (sec): 56.18 - samples/sec: 2654.81 - lr: 0.000018 - momentum: 0.000000
2023-10-25 18:28:11,497 epoch 5 - iter 1246/1786 - loss 0.03952798 - time (sec): 65.43 - samples/sec: 2666.55 - lr: 0.000018 - momentum: 0.000000
2023-10-25 18:28:20,489 epoch 5 - iter 1424/1786 - loss 0.03903402 - time (sec): 74.42 - samples/sec: 2667.01 - lr: 0.000017 - momentum: 0.000000
2023-10-25 18:28:29,211 epoch 5 - iter 1602/1786 - loss 0.03844957 - time (sec): 83.14 - samples/sec: 2669.18 - lr: 0.000017 - momentum: 0.000000
2023-10-25 18:28:38,265 epoch 5 - iter 1780/1786 - loss 0.03829347 - time (sec): 92.19 - samples/sec: 2687.67 - lr: 0.000017 - momentum: 0.000000
2023-10-25 18:28:38,578 ----------------------------------------------------------------------------------------------------
2023-10-25 18:28:38,578 EPOCH 5 done: loss 0.0382 - lr: 0.000017
2023-10-25 18:28:44,071 DEV : loss 0.19442911446094513 - f1-score (micro avg)  0.7802
2023-10-25 18:28:44,094 ----------------------------------------------------------------------------------------------------
2023-10-25 18:28:53,424 epoch 6 - iter 178/1786 - loss 0.03398055 - time (sec): 9.33 - samples/sec: 2700.33 - lr: 0.000016 - momentum: 0.000000
2023-10-25 18:29:02,610 epoch 6 - iter 356/1786 - loss 0.03316916 - time (sec): 18.51 - samples/sec: 2757.68 - lr: 0.000016 - momentum: 0.000000
2023-10-25 18:29:12,181 epoch 6 - iter 534/1786 - loss 0.03040477 - time (sec): 28.09 - samples/sec: 2648.55 - lr: 0.000016 - momentum: 0.000000
2023-10-25 18:29:21,873 epoch 6 - iter 712/1786 - loss 0.03212632 - time (sec): 37.78 - samples/sec: 2628.07 - lr: 0.000015 - momentum: 0.000000
2023-10-25 18:29:31,591 epoch 6 - iter 890/1786 - loss 0.02992094 - time (sec): 47.50 - samples/sec: 2632.24 - lr: 0.000015 - momentum: 0.000000
2023-10-25 18:29:41,332 epoch 6 - iter 1068/1786 - loss 0.02930104 - time (sec): 57.24 - samples/sec: 2618.93 - lr: 0.000015 - momentum: 0.000000
2023-10-25 18:29:50,819 epoch 6 - iter 1246/1786 - loss 0.02972192 - time (sec): 66.72 - samples/sec: 2622.50 - lr: 0.000014 - momentum: 0.000000
2023-10-25 18:30:00,534 epoch 6 - iter 1424/1786 - loss 0.02944805 - time (sec): 76.44 - samples/sec: 2594.65 - lr: 0.000014 - momentum: 0.000000
2023-10-25 18:30:09,882 epoch 6 - iter 1602/1786 - loss 0.02958451 - time (sec): 85.79 - samples/sec: 2626.36 - lr: 0.000014 - momentum: 0.000000
2023-10-25 18:30:18,857 epoch 6 - iter 1780/1786 - loss 0.03003769 - time (sec): 94.76 - samples/sec: 2618.30 - lr: 0.000013 - momentum: 0.000000
2023-10-25 18:30:19,162 ----------------------------------------------------------------------------------------------------
2023-10-25 18:30:19,163 EPOCH 6 done: loss 0.0300 - lr: 0.000013
2023-10-25 18:30:23,457 DEV : loss 0.18333885073661804 - f1-score (micro avg)  0.7925
2023-10-25 18:30:23,480 saving best model
2023-10-25 18:30:24,184 ----------------------------------------------------------------------------------------------------
2023-10-25 18:30:34,775 epoch 7 - iter 178/1786 - loss 0.02162460 - time (sec): 10.59 - samples/sec: 2448.54 - lr: 0.000013 - momentum: 0.000000
2023-10-25 18:30:44,255 epoch 7 - iter 356/1786 - loss 0.01908762 - time (sec): 20.07 - samples/sec: 2453.18 - lr: 0.000013 - momentum: 0.000000
2023-10-25 18:30:53,682 epoch 7 - iter 534/1786 - loss 0.01976296 - time (sec): 29.50 - samples/sec: 2516.85 - lr: 0.000012 - momentum: 0.000000
2023-10-25 18:31:02,712 epoch 7 - iter 712/1786 - loss 0.02174272 - time (sec): 38.53 - samples/sec: 2564.31 - lr: 0.000012 - momentum: 0.000000
2023-10-25 18:31:11,779 epoch 7 - iter 890/1786 - loss 0.02278711 - time (sec): 47.59 - samples/sec: 2635.47 - lr: 0.000012 - momentum: 0.000000
2023-10-25 18:31:20,900 epoch 7 - iter 1068/1786 - loss 0.02154762 - time (sec): 56.71 - samples/sec: 2659.10 - lr: 0.000011 - momentum: 0.000000
2023-10-25 18:31:29,668 epoch 7 - iter 1246/1786 - loss 0.02092074 - time (sec): 65.48 - samples/sec: 2699.75 - lr: 0.000011 - momentum: 0.000000
2023-10-25 18:31:38,781 epoch 7 - iter 1424/1786 - loss 0.02100336 - time (sec): 74.60 - samples/sec: 2665.33 - lr: 0.000011 - momentum: 0.000000
2023-10-25 18:31:48,049 epoch 7 - iter 1602/1786 - loss 0.02189701 - time (sec): 83.86 - samples/sec: 2662.93 - lr: 0.000010 - momentum: 0.000000
2023-10-25 18:31:57,161 epoch 7 - iter 1780/1786 - loss 0.02145412 - time (sec): 92.98 - samples/sec: 2665.12 - lr: 0.000010 - momentum: 0.000000
2023-10-25 18:31:57,481 ----------------------------------------------------------------------------------------------------
2023-10-25 18:31:57,481 EPOCH 7 done: loss 0.0214 - lr: 0.000010
2023-10-25 18:32:01,934 DEV : loss 0.19056054949760437 - f1-score (micro avg)  0.8075
2023-10-25 18:32:01,956 saving best model
2023-10-25 18:32:02,611 ----------------------------------------------------------------------------------------------------
2023-10-25 18:32:12,182 epoch 8 - iter 178/1786 - loss 0.02612736 - time (sec): 9.57 - samples/sec: 2588.30 - lr: 0.000010 - momentum: 0.000000
2023-10-25 18:32:21,872 epoch 8 - iter 356/1786 - loss 0.01894543 - time (sec): 19.26 - samples/sec: 2516.13 - lr: 0.000009 - momentum: 0.000000
2023-10-25 18:32:31,455 epoch 8 - iter 534/1786 - loss 0.01672658 - time (sec): 28.84 - samples/sec: 2550.32 - lr: 0.000009 - momentum: 0.000000
2023-10-25 18:32:40,981 epoch 8 - iter 712/1786 - loss 0.01545569 - time (sec): 38.37 - samples/sec: 2583.47 - lr: 0.000009 - momentum: 0.000000
2023-10-25 18:32:50,491 epoch 8 - iter 890/1786 - loss 0.01420894 - time (sec): 47.88 - samples/sec: 2582.39 - lr: 0.000008 - momentum: 0.000000
2023-10-25 18:32:59,910 epoch 8 - iter 1068/1786 - loss 0.01478084 - time (sec): 57.30 - samples/sec: 2565.98 - lr: 0.000008 - momentum: 0.000000
2023-10-25 18:33:09,307 epoch 8 - iter 1246/1786 - loss 0.01595451 - time (sec): 66.69 - samples/sec: 2572.39 - lr: 0.000008 - momentum: 0.000000
2023-10-25 18:33:18,275 epoch 8 - iter 1424/1786 - loss 0.01587470 - time (sec): 75.66 - samples/sec: 2598.46 - lr: 0.000007 - momentum: 0.000000
2023-10-25 18:33:27,281 epoch 8 - iter 1602/1786 - loss 0.01586368 - time (sec): 84.67 - samples/sec: 2636.76 - lr: 0.000007 - momentum: 0.000000
2023-10-25 18:33:36,357 epoch 8 - iter 1780/1786 - loss 0.01584675 - time (sec): 93.74 - samples/sec: 2645.49 - lr: 0.000007 - momentum: 0.000000
2023-10-25 18:33:36,660 ----------------------------------------------------------------------------------------------------
2023-10-25 18:33:36,660 EPOCH 8 done: loss 0.0158 - lr: 0.000007
2023-10-25 18:33:42,265 DEV : loss 0.19766351580619812 - f1-score (micro avg)  0.8038
2023-10-25 18:33:42,287 ----------------------------------------------------------------------------------------------------
2023-10-25 18:33:51,969 epoch 9 - iter 178/1786 - loss 0.01028428 - time (sec): 9.68 - samples/sec: 2633.27 - lr: 0.000006 - momentum: 0.000000
2023-10-25 18:34:01,084 epoch 9 - iter 356/1786 - loss 0.00955984 - time (sec): 18.80 - samples/sec: 2571.59 - lr: 0.000006 - momentum: 0.000000
2023-10-25 18:34:10,368 epoch 9 - iter 534/1786 - loss 0.01151104 - time (sec): 28.08 - samples/sec: 2581.54 - lr: 0.000006 - momentum: 0.000000
2023-10-25 18:34:19,236 epoch 9 - iter 712/1786 - loss 0.01207848 - time (sec): 36.95 - samples/sec: 2625.24 - lr: 0.000005 - momentum: 0.000000
2023-10-25 18:34:28,301 epoch 9 - iter 890/1786 - loss 0.01138794 - time (sec): 46.01 - samples/sec: 2612.46 - lr: 0.000005 - momentum: 0.000000
2023-10-25 18:34:37,234 epoch 9 - iter 1068/1786 - loss 0.01116143 - time (sec): 54.95 - samples/sec: 2672.29 - lr: 0.000005 - momentum: 0.000000
2023-10-25 18:34:46,369 epoch 9 - iter 1246/1786 - loss 0.01155486 - time (sec): 64.08 - samples/sec: 2669.89 - lr: 0.000004 - momentum: 0.000000
2023-10-25 18:34:55,509 epoch 9 - iter 1424/1786 - loss 0.01114669 - time (sec): 73.22 - samples/sec: 2685.06 - lr: 0.000004 - momentum: 0.000000
2023-10-25 18:35:04,412 epoch 9 - iter 1602/1786 - loss 0.01110376 - time (sec): 82.12 - samples/sec: 2697.08 - lr: 0.000004 - momentum: 0.000000
2023-10-25 18:35:13,124 epoch 9 - iter 1780/1786 - loss 0.01074968 - time (sec): 90.84 - samples/sec: 2731.45 - lr: 0.000003 - momentum: 0.000000
2023-10-25 18:35:13,422 ----------------------------------------------------------------------------------------------------
2023-10-25 18:35:13,423 EPOCH 9 done: loss 0.0108 - lr: 0.000003
2023-10-25 18:35:17,832 DEV : loss 0.21357937157154083 - f1-score (micro avg)  0.8104
2023-10-25 18:35:17,855 saving best model
2023-10-25 18:35:18,543 ----------------------------------------------------------------------------------------------------
2023-10-25 18:35:28,085 epoch 10 - iter 178/1786 - loss 0.00637564 - time (sec): 9.54 - samples/sec: 2632.83 - lr: 0.000003 - momentum: 0.000000
2023-10-25 18:35:37,383 epoch 10 - iter 356/1786 - loss 0.00589645 - time (sec): 18.84 - samples/sec: 2586.16 - lr: 0.000003 - momentum: 0.000000
2023-10-25 18:35:46,529 epoch 10 - iter 534/1786 - loss 0.00533950 - time (sec): 27.98 - samples/sec: 2649.13 - lr: 0.000002 - momentum: 0.000000
2023-10-25 18:35:55,356 epoch 10 - iter 712/1786 - loss 0.00617715 - time (sec): 36.81 - samples/sec: 2702.22 - lr: 0.000002 - momentum: 0.000000
2023-10-25 18:36:04,322 epoch 10 - iter 890/1786 - loss 0.00620859 - time (sec): 45.78 - samples/sec: 2721.41 - lr: 0.000002 - momentum: 0.000000
2023-10-25 18:36:13,367 epoch 10 - iter 1068/1786 - loss 0.00641849 - time (sec): 54.82 - samples/sec: 2715.20 - lr: 0.000001 - momentum: 0.000000
2023-10-25 18:36:22,629 epoch 10 - iter 1246/1786 - loss 0.00676503 - time (sec): 64.08 - samples/sec: 2702.32 - lr: 0.000001 - momentum: 0.000000
2023-10-25 18:36:32,265 epoch 10 - iter 1424/1786 - loss 0.00651546 - time (sec): 73.72 - samples/sec: 2700.44 - lr: 0.000001 - momentum: 0.000000
2023-10-25 18:36:41,692 epoch 10 - iter 1602/1786 - loss 0.00660118 - time (sec): 83.15 - samples/sec: 2690.29 - lr: 0.000000 - momentum: 0.000000
2023-10-25 18:36:50,765 epoch 10 - iter 1780/1786 - loss 0.00682484 - time (sec): 92.22 - samples/sec: 2689.05 - lr: 0.000000 - momentum: 0.000000
2023-10-25 18:36:51,073 ----------------------------------------------------------------------------------------------------
2023-10-25 18:36:51,074 EPOCH 10 done: loss 0.0068 - lr: 0.000000
2023-10-25 18:36:56,195 DEV : loss 0.21570290625095367 - f1-score (micro avg)  0.8096
2023-10-25 18:36:56,710 ----------------------------------------------------------------------------------------------------
2023-10-25 18:36:56,712 Loading model from best epoch ...
2023-10-25 18:36:58,657 SequenceTagger predicts: Dictionary with 17 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
2023-10-25 18:37:13,089 
Results:
- F-score (micro) 0.6996
- F-score (macro) 0.6261
- Accuracy 0.5539

By class:
              precision    recall  f1-score   support

         LOC     0.6930    0.7050    0.6990      1095
         PER     0.7827    0.7796    0.7812      1012
         ORG     0.4655    0.5854    0.5186       357
   HumanProd     0.3966    0.6970    0.5055        33

   micro avg     0.6820    0.7181    0.6996      2497
   macro avg     0.5844    0.6918    0.6261      2497
weighted avg     0.6929    0.7181    0.7039      2497

2023-10-25 18:37:13,089 ----------------------------------------------------------------------------------------------------