|
2023-10-19 20:48:01,185 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:48:01,185 Model: "SequenceTagger( |
|
(embeddings): TransformerWordEmbeddings( |
|
(model): BertModel( |
|
(embeddings): BertEmbeddings( |
|
(word_embeddings): Embedding(32001, 128) |
|
(position_embeddings): Embedding(512, 128) |
|
(token_type_embeddings): Embedding(2, 128) |
|
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(encoder): BertEncoder( |
|
(layer): ModuleList( |
|
(0-1): 2 x BertLayer( |
|
(attention): BertAttention( |
|
(self): BertSelfAttention( |
|
(query): Linear(in_features=128, out_features=128, bias=True) |
|
(key): Linear(in_features=128, out_features=128, bias=True) |
|
(value): Linear(in_features=128, out_features=128, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): BertSelfOutput( |
|
(dense): Linear(in_features=128, out_features=128, bias=True) |
|
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): BertIntermediate( |
|
(dense): Linear(in_features=128, out_features=512, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): BertOutput( |
|
(dense): Linear(in_features=512, out_features=128, bias=True) |
|
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
) |
|
(pooler): BertPooler( |
|
(dense): Linear(in_features=128, out_features=128, bias=True) |
|
(activation): Tanh() |
|
) |
|
) |
|
) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(linear): Linear(in_features=128, out_features=17, bias=True) |
|
(loss_function): CrossEntropyLoss() |
|
)" |
|
2023-10-19 20:48:01,185 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:48:01,185 MultiCorpus: 7142 train + 698 dev + 2570 test sentences |
|
- NER_HIPE_2022 Corpus: 7142 train + 698 dev + 2570 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/fr/with_doc_seperator |
|
2023-10-19 20:48:01,185 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:48:01,185 Train: 7142 sentences |
|
2023-10-19 20:48:01,185 (train_with_dev=False, train_with_test=False) |
|
2023-10-19 20:48:01,185 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:48:01,185 Training Params: |
|
2023-10-19 20:48:01,186 - learning_rate: "5e-05" |
|
2023-10-19 20:48:01,186 - mini_batch_size: "8" |
|
2023-10-19 20:48:01,186 - max_epochs: "10" |
|
2023-10-19 20:48:01,186 - shuffle: "True" |
|
2023-10-19 20:48:01,186 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:48:01,186 Plugins: |
|
2023-10-19 20:48:01,186 - TensorboardLogger |
|
2023-10-19 20:48:01,186 - LinearScheduler | warmup_fraction: '0.1' |
|
2023-10-19 20:48:01,186 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:48:01,186 Final evaluation on model from best epoch (best-model.pt) |
|
2023-10-19 20:48:01,186 - metric: "('micro avg', 'f1-score')" |
|
2023-10-19 20:48:01,186 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:48:01,186 Computation: |
|
2023-10-19 20:48:01,186 - compute on device: cuda:0 |
|
2023-10-19 20:48:01,186 - embedding storage: none |
|
2023-10-19 20:48:01,186 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:48:01,186 Model training base path: "hmbench-newseye/fr-dbmdz/bert-tiny-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4" |
|
2023-10-19 20:48:01,186 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:48:01,186 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:48:01,186 Logging anything other than scalars to TensorBoard is currently not supported. |
|
2023-10-19 20:48:03,348 epoch 1 - iter 89/893 - loss 3.31788487 - time (sec): 2.16 - samples/sec: 11311.02 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-19 20:48:05,631 epoch 1 - iter 178/893 - loss 3.00220485 - time (sec): 4.44 - samples/sec: 11232.29 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-19 20:48:07,923 epoch 1 - iter 267/893 - loss 2.52761114 - time (sec): 6.74 - samples/sec: 11190.98 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-19 20:48:10,295 epoch 1 - iter 356/893 - loss 2.08600669 - time (sec): 9.11 - samples/sec: 11235.03 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-19 20:48:12,581 epoch 1 - iter 445/893 - loss 1.83262530 - time (sec): 11.39 - samples/sec: 11102.08 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-19 20:48:15,291 epoch 1 - iter 534/893 - loss 1.65539925 - time (sec): 14.10 - samples/sec: 10637.43 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-19 20:48:17,545 epoch 1 - iter 623/893 - loss 1.51778252 - time (sec): 16.36 - samples/sec: 10597.71 - lr: 0.000035 - momentum: 0.000000 |
|
2023-10-19 20:48:19,817 epoch 1 - iter 712/893 - loss 1.39687716 - time (sec): 18.63 - samples/sec: 10637.02 - lr: 0.000040 - momentum: 0.000000 |
|
2023-10-19 20:48:22,116 epoch 1 - iter 801/893 - loss 1.30006566 - time (sec): 20.93 - samples/sec: 10682.81 - lr: 0.000045 - momentum: 0.000000 |
|
2023-10-19 20:48:24,252 epoch 1 - iter 890/893 - loss 1.22292912 - time (sec): 23.07 - samples/sec: 10766.58 - lr: 0.000050 - momentum: 0.000000 |
|
2023-10-19 20:48:24,309 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:48:24,309 EPOCH 1 done: loss 1.2221 - lr: 0.000050 |
|
2023-10-19 20:48:25,279 DEV : loss 0.31805744767189026 - f1-score (micro avg) 0.1418 |
|
2023-10-19 20:48:25,292 saving best model |
|
2023-10-19 20:48:25,326 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:48:27,490 epoch 2 - iter 89/893 - loss 0.44839489 - time (sec): 2.16 - samples/sec: 12092.79 - lr: 0.000049 - momentum: 0.000000 |
|
2023-10-19 20:48:29,745 epoch 2 - iter 178/893 - loss 0.45190939 - time (sec): 4.42 - samples/sec: 11426.89 - lr: 0.000049 - momentum: 0.000000 |
|
2023-10-19 20:48:32,002 epoch 2 - iter 267/893 - loss 0.43792015 - time (sec): 6.68 - samples/sec: 11102.76 - lr: 0.000048 - momentum: 0.000000 |
|
2023-10-19 20:48:34,385 epoch 2 - iter 356/893 - loss 0.43913817 - time (sec): 9.06 - samples/sec: 11081.95 - lr: 0.000048 - momentum: 0.000000 |
|
2023-10-19 20:48:36,597 epoch 2 - iter 445/893 - loss 0.42993763 - time (sec): 11.27 - samples/sec: 11119.56 - lr: 0.000047 - momentum: 0.000000 |
|
2023-10-19 20:48:38,813 epoch 2 - iter 534/893 - loss 0.43160330 - time (sec): 13.49 - samples/sec: 11151.24 - lr: 0.000047 - momentum: 0.000000 |
|
2023-10-19 20:48:41,016 epoch 2 - iter 623/893 - loss 0.42662350 - time (sec): 15.69 - samples/sec: 11100.26 - lr: 0.000046 - momentum: 0.000000 |
|
2023-10-19 20:48:43,209 epoch 2 - iter 712/893 - loss 0.42179532 - time (sec): 17.88 - samples/sec: 11134.96 - lr: 0.000046 - momentum: 0.000000 |
|
2023-10-19 20:48:45,471 epoch 2 - iter 801/893 - loss 0.41961257 - time (sec): 20.14 - samples/sec: 11127.37 - lr: 0.000045 - momentum: 0.000000 |
|
2023-10-19 20:48:47,717 epoch 2 - iter 890/893 - loss 0.41430294 - time (sec): 22.39 - samples/sec: 11086.08 - lr: 0.000044 - momentum: 0.000000 |
|
2023-10-19 20:48:47,788 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:48:47,789 EPOCH 2 done: loss 0.4144 - lr: 0.000044 |
|
2023-10-19 20:48:50,606 DEV : loss 0.2429792881011963 - f1-score (micro avg) 0.4008 |
|
2023-10-19 20:48:50,619 saving best model |
|
2023-10-19 20:48:50,656 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:48:52,917 epoch 3 - iter 89/893 - loss 0.34817659 - time (sec): 2.26 - samples/sec: 10227.98 - lr: 0.000044 - momentum: 0.000000 |
|
2023-10-19 20:48:55,197 epoch 3 - iter 178/893 - loss 0.34419809 - time (sec): 4.54 - samples/sec: 10597.89 - lr: 0.000043 - momentum: 0.000000 |
|
2023-10-19 20:48:57,484 epoch 3 - iter 267/893 - loss 0.34570190 - time (sec): 6.83 - samples/sec: 10723.08 - lr: 0.000043 - momentum: 0.000000 |
|
2023-10-19 20:48:59,738 epoch 3 - iter 356/893 - loss 0.35673527 - time (sec): 9.08 - samples/sec: 10912.76 - lr: 0.000042 - momentum: 0.000000 |
|
2023-10-19 20:49:01,958 epoch 3 - iter 445/893 - loss 0.35787478 - time (sec): 11.30 - samples/sec: 10929.46 - lr: 0.000042 - momentum: 0.000000 |
|
2023-10-19 20:49:04,293 epoch 3 - iter 534/893 - loss 0.34975742 - time (sec): 13.64 - samples/sec: 10906.45 - lr: 0.000041 - momentum: 0.000000 |
|
2023-10-19 20:49:06,578 epoch 3 - iter 623/893 - loss 0.34623751 - time (sec): 15.92 - samples/sec: 10910.39 - lr: 0.000041 - momentum: 0.000000 |
|
2023-10-19 20:49:08,859 epoch 3 - iter 712/893 - loss 0.34105492 - time (sec): 18.20 - samples/sec: 10933.97 - lr: 0.000040 - momentum: 0.000000 |
|
2023-10-19 20:49:11,148 epoch 3 - iter 801/893 - loss 0.33634117 - time (sec): 20.49 - samples/sec: 10927.23 - lr: 0.000039 - momentum: 0.000000 |
|
2023-10-19 20:49:13,428 epoch 3 - iter 890/893 - loss 0.33396920 - time (sec): 22.77 - samples/sec: 10869.31 - lr: 0.000039 - momentum: 0.000000 |
|
2023-10-19 20:49:13,514 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:49:13,514 EPOCH 3 done: loss 0.3337 - lr: 0.000039 |
|
2023-10-19 20:49:16,351 DEV : loss 0.21542218327522278 - f1-score (micro avg) 0.4361 |
|
2023-10-19 20:49:16,366 saving best model |
|
2023-10-19 20:49:16,401 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:49:18,738 epoch 4 - iter 89/893 - loss 0.30607610 - time (sec): 2.34 - samples/sec: 10539.75 - lr: 0.000038 - momentum: 0.000000 |
|
2023-10-19 20:49:21,031 epoch 4 - iter 178/893 - loss 0.30905617 - time (sec): 4.63 - samples/sec: 10680.88 - lr: 0.000038 - momentum: 0.000000 |
|
2023-10-19 20:49:23,318 epoch 4 - iter 267/893 - loss 0.29857101 - time (sec): 6.92 - samples/sec: 10720.72 - lr: 0.000037 - momentum: 0.000000 |
|
2023-10-19 20:49:25,577 epoch 4 - iter 356/893 - loss 0.29476408 - time (sec): 9.17 - samples/sec: 10783.77 - lr: 0.000037 - momentum: 0.000000 |
|
2023-10-19 20:49:27,831 epoch 4 - iter 445/893 - loss 0.29327210 - time (sec): 11.43 - samples/sec: 10831.79 - lr: 0.000036 - momentum: 0.000000 |
|
2023-10-19 20:49:30,154 epoch 4 - iter 534/893 - loss 0.29218114 - time (sec): 13.75 - samples/sec: 10873.04 - lr: 0.000036 - momentum: 0.000000 |
|
2023-10-19 20:49:32,370 epoch 4 - iter 623/893 - loss 0.29353192 - time (sec): 15.97 - samples/sec: 10834.37 - lr: 0.000035 - momentum: 0.000000 |
|
2023-10-19 20:49:34,613 epoch 4 - iter 712/893 - loss 0.29422867 - time (sec): 18.21 - samples/sec: 10899.70 - lr: 0.000034 - momentum: 0.000000 |
|
2023-10-19 20:49:36,847 epoch 4 - iter 801/893 - loss 0.29355665 - time (sec): 20.45 - samples/sec: 10841.59 - lr: 0.000034 - momentum: 0.000000 |
|
2023-10-19 20:49:39,153 epoch 4 - iter 890/893 - loss 0.29116940 - time (sec): 22.75 - samples/sec: 10896.21 - lr: 0.000033 - momentum: 0.000000 |
|
2023-10-19 20:49:39,226 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:49:39,227 EPOCH 4 done: loss 0.2910 - lr: 0.000033 |
|
2023-10-19 20:49:41,610 DEV : loss 0.20385973155498505 - f1-score (micro avg) 0.4589 |
|
2023-10-19 20:49:41,624 saving best model |
|
2023-10-19 20:49:41,659 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:49:43,712 epoch 5 - iter 89/893 - loss 0.25219515 - time (sec): 2.05 - samples/sec: 11876.44 - lr: 0.000033 - momentum: 0.000000 |
|
2023-10-19 20:49:45,968 epoch 5 - iter 178/893 - loss 0.26468865 - time (sec): 4.31 - samples/sec: 11290.43 - lr: 0.000032 - momentum: 0.000000 |
|
2023-10-19 20:49:48,261 epoch 5 - iter 267/893 - loss 0.27013532 - time (sec): 6.60 - samples/sec: 11053.64 - lr: 0.000032 - momentum: 0.000000 |
|
2023-10-19 20:49:50,577 epoch 5 - iter 356/893 - loss 0.26947573 - time (sec): 8.92 - samples/sec: 11028.19 - lr: 0.000031 - momentum: 0.000000 |
|
2023-10-19 20:49:52,776 epoch 5 - iter 445/893 - loss 0.27194910 - time (sec): 11.12 - samples/sec: 11145.21 - lr: 0.000031 - momentum: 0.000000 |
|
2023-10-19 20:49:54,655 epoch 5 - iter 534/893 - loss 0.26870618 - time (sec): 13.00 - samples/sec: 11451.82 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-19 20:49:56,476 epoch 5 - iter 623/893 - loss 0.26893292 - time (sec): 14.82 - samples/sec: 11703.51 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-19 20:49:58,730 epoch 5 - iter 712/893 - loss 0.26943529 - time (sec): 17.07 - samples/sec: 11640.91 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-19 20:50:01,091 epoch 5 - iter 801/893 - loss 0.26558780 - time (sec): 19.43 - samples/sec: 11484.67 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-19 20:50:03,363 epoch 5 - iter 890/893 - loss 0.26382300 - time (sec): 21.70 - samples/sec: 11422.87 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-19 20:50:03,435 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:50:03,435 EPOCH 5 done: loss 0.2639 - lr: 0.000028 |
|
2023-10-19 20:50:06,328 DEV : loss 0.19422198832035065 - f1-score (micro avg) 0.4997 |
|
2023-10-19 20:50:06,349 saving best model |
|
2023-10-19 20:50:06,385 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:50:08,645 epoch 6 - iter 89/893 - loss 0.24073724 - time (sec): 2.26 - samples/sec: 11025.22 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-19 20:50:10,868 epoch 6 - iter 178/893 - loss 0.23869287 - time (sec): 4.48 - samples/sec: 10742.28 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-19 20:50:13,108 epoch 6 - iter 267/893 - loss 0.23653702 - time (sec): 6.72 - samples/sec: 10700.65 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-19 20:50:15,366 epoch 6 - iter 356/893 - loss 0.23682304 - time (sec): 8.98 - samples/sec: 10740.98 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-19 20:50:17,617 epoch 6 - iter 445/893 - loss 0.23901517 - time (sec): 11.23 - samples/sec: 10742.46 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-19 20:50:19,888 epoch 6 - iter 534/893 - loss 0.24103990 - time (sec): 13.50 - samples/sec: 10774.77 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-19 20:50:22,139 epoch 6 - iter 623/893 - loss 0.24250770 - time (sec): 15.75 - samples/sec: 10852.32 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-19 20:50:24,407 epoch 6 - iter 712/893 - loss 0.24499793 - time (sec): 18.02 - samples/sec: 10936.70 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-19 20:50:26,664 epoch 6 - iter 801/893 - loss 0.24412070 - time (sec): 20.28 - samples/sec: 10977.66 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-19 20:50:28,983 epoch 6 - iter 890/893 - loss 0.24378175 - time (sec): 22.60 - samples/sec: 10963.58 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-19 20:50:29,062 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:50:29,062 EPOCH 6 done: loss 0.2434 - lr: 0.000022 |
|
2023-10-19 20:50:31,413 DEV : loss 0.1892632693052292 - f1-score (micro avg) 0.5121 |
|
2023-10-19 20:50:31,426 saving best model |
|
2023-10-19 20:50:31,462 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:50:34,181 epoch 7 - iter 89/893 - loss 0.21102632 - time (sec): 2.72 - samples/sec: 8398.67 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-19 20:50:36,427 epoch 7 - iter 178/893 - loss 0.22949609 - time (sec): 4.96 - samples/sec: 9490.59 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-19 20:50:38,659 epoch 7 - iter 267/893 - loss 0.22714217 - time (sec): 7.20 - samples/sec: 10067.28 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-19 20:50:40,892 epoch 7 - iter 356/893 - loss 0.22411998 - time (sec): 9.43 - samples/sec: 10212.94 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-19 20:50:43,256 epoch 7 - iter 445/893 - loss 0.22268983 - time (sec): 11.79 - samples/sec: 10343.03 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-19 20:50:45,358 epoch 7 - iter 534/893 - loss 0.22316819 - time (sec): 13.90 - samples/sec: 10467.56 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-19 20:50:47,671 epoch 7 - iter 623/893 - loss 0.22564912 - time (sec): 16.21 - samples/sec: 10384.21 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-19 20:50:50,031 epoch 7 - iter 712/893 - loss 0.22635014 - time (sec): 18.57 - samples/sec: 10611.04 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-19 20:50:52,321 epoch 7 - iter 801/893 - loss 0.22691152 - time (sec): 20.86 - samples/sec: 10735.21 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-19 20:50:54,568 epoch 7 - iter 890/893 - loss 0.22770015 - time (sec): 23.10 - samples/sec: 10734.74 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-19 20:50:54,639 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:50:54,639 EPOCH 7 done: loss 0.2274 - lr: 0.000017 |
|
2023-10-19 20:50:56,997 DEV : loss 0.18830116093158722 - f1-score (micro avg) 0.5288 |
|
2023-10-19 20:50:57,012 saving best model |
|
2023-10-19 20:50:57,045 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:50:59,273 epoch 8 - iter 89/893 - loss 0.19916108 - time (sec): 2.23 - samples/sec: 10591.83 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-19 20:51:01,665 epoch 8 - iter 178/893 - loss 0.21119586 - time (sec): 4.62 - samples/sec: 10765.32 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-19 20:51:03,984 epoch 8 - iter 267/893 - loss 0.21979280 - time (sec): 6.94 - samples/sec: 10695.84 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-19 20:51:06,299 epoch 8 - iter 356/893 - loss 0.21652746 - time (sec): 9.25 - samples/sec: 10710.65 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-19 20:51:08,560 epoch 8 - iter 445/893 - loss 0.22339324 - time (sec): 11.51 - samples/sec: 10656.55 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-19 20:51:10,778 epoch 8 - iter 534/893 - loss 0.22339473 - time (sec): 13.73 - samples/sec: 10739.10 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-19 20:51:13,062 epoch 8 - iter 623/893 - loss 0.22183591 - time (sec): 16.02 - samples/sec: 10697.70 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-19 20:51:15,299 epoch 8 - iter 712/893 - loss 0.21960297 - time (sec): 18.25 - samples/sec: 10714.14 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-19 20:51:17,631 epoch 8 - iter 801/893 - loss 0.22015520 - time (sec): 20.59 - samples/sec: 10823.07 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-19 20:51:19,875 epoch 8 - iter 890/893 - loss 0.21912504 - time (sec): 22.83 - samples/sec: 10865.83 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-19 20:51:19,943 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:51:19,943 EPOCH 8 done: loss 0.2197 - lr: 0.000011 |
|
2023-10-19 20:51:22,761 DEV : loss 0.18704333901405334 - f1-score (micro avg) 0.5266 |
|
2023-10-19 20:51:22,774 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:51:25,008 epoch 9 - iter 89/893 - loss 0.22409608 - time (sec): 2.23 - samples/sec: 10905.75 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-19 20:51:27,275 epoch 9 - iter 178/893 - loss 0.21545283 - time (sec): 4.50 - samples/sec: 10899.19 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-19 20:51:29,461 epoch 9 - iter 267/893 - loss 0.22001584 - time (sec): 6.69 - samples/sec: 10951.22 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-19 20:51:31,753 epoch 9 - iter 356/893 - loss 0.22377309 - time (sec): 8.98 - samples/sec: 10998.28 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-19 20:51:34,036 epoch 9 - iter 445/893 - loss 0.22189321 - time (sec): 11.26 - samples/sec: 11162.57 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-19 20:51:36,280 epoch 9 - iter 534/893 - loss 0.21704728 - time (sec): 13.50 - samples/sec: 11064.48 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-19 20:51:38,531 epoch 9 - iter 623/893 - loss 0.21551115 - time (sec): 15.76 - samples/sec: 11080.72 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-19 20:51:40,762 epoch 9 - iter 712/893 - loss 0.21465534 - time (sec): 17.99 - samples/sec: 11037.93 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-19 20:51:43,131 epoch 9 - iter 801/893 - loss 0.21346279 - time (sec): 20.36 - samples/sec: 10987.62 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-19 20:51:45,480 epoch 9 - iter 890/893 - loss 0.21290729 - time (sec): 22.70 - samples/sec: 10917.64 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-19 20:51:45,552 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:51:45,552 EPOCH 9 done: loss 0.2128 - lr: 0.000006 |
|
2023-10-19 20:51:47,908 DEV : loss 0.18491902947425842 - f1-score (micro avg) 0.5228 |
|
2023-10-19 20:51:47,922 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:51:50,065 epoch 10 - iter 89/893 - loss 0.19783421 - time (sec): 2.14 - samples/sec: 12237.43 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-19 20:51:52,362 epoch 10 - iter 178/893 - loss 0.19939993 - time (sec): 4.44 - samples/sec: 11666.48 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-19 20:51:55,147 epoch 10 - iter 267/893 - loss 0.20297035 - time (sec): 7.22 - samples/sec: 10795.24 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-19 20:51:57,423 epoch 10 - iter 356/893 - loss 0.20510717 - time (sec): 9.50 - samples/sec: 10783.91 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-19 20:51:59,726 epoch 10 - iter 445/893 - loss 0.20467266 - time (sec): 11.80 - samples/sec: 10781.26 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-19 20:52:01,947 epoch 10 - iter 534/893 - loss 0.20537293 - time (sec): 14.02 - samples/sec: 10806.69 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-19 20:52:04,321 epoch 10 - iter 623/893 - loss 0.20318246 - time (sec): 16.40 - samples/sec: 10731.05 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-19 20:52:06,590 epoch 10 - iter 712/893 - loss 0.20334880 - time (sec): 18.67 - samples/sec: 10705.27 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-19 20:52:08,869 epoch 10 - iter 801/893 - loss 0.20499649 - time (sec): 20.95 - samples/sec: 10675.00 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-19 20:52:11,144 epoch 10 - iter 890/893 - loss 0.20573355 - time (sec): 23.22 - samples/sec: 10664.10 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-19 20:52:11,215 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:52:11,215 EPOCH 10 done: loss 0.2059 - lr: 0.000000 |
|
2023-10-19 20:52:13,598 DEV : loss 0.18561328947544098 - f1-score (micro avg) 0.5273 |
|
2023-10-19 20:52:13,641 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 20:52:13,642 Loading model from best epoch ... |
|
2023-10-19 20:52:13,719 SequenceTagger predicts: Dictionary with 17 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd |
|
2023-10-19 20:52:18,262 |
|
Results: |
|
- F-score (micro) 0.4184 |
|
- F-score (macro) 0.256 |
|
- Accuracy 0.2729 |
|
|
|
By class: |
|
precision recall f1-score support |
|
|
|
LOC 0.4267 0.4968 0.4591 1095 |
|
PER 0.4579 0.4733 0.4655 1012 |
|
ORG 0.1359 0.0784 0.0995 357 |
|
HumanProd 0.0000 0.0000 0.0000 33 |
|
|
|
micro avg 0.4159 0.4209 0.4184 2497 |
|
macro avg 0.2551 0.2621 0.2560 2497 |
|
weighted avg 0.3921 0.4209 0.4042 2497 |
|
|
|
2023-10-19 20:52:18,262 ---------------------------------------------------------------------------------------------------- |
|
|