File size: 23,783 Bytes
9403c51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
2023-10-16 20:18:22,608 ----------------------------------------------------------------------------------------------------
2023-10-16 20:18:22,609 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=17, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-16 20:18:22,609 ----------------------------------------------------------------------------------------------------
2023-10-16 20:18:22,609 MultiCorpus: 1085 train + 148 dev + 364 test sentences
 - NER_HIPE_2022 Corpus: 1085 train + 148 dev + 364 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/sv/with_doc_seperator
2023-10-16 20:18:22,609 ----------------------------------------------------------------------------------------------------
2023-10-16 20:18:22,609 Train:  1085 sentences
2023-10-16 20:18:22,609         (train_with_dev=False, train_with_test=False)
2023-10-16 20:18:22,609 ----------------------------------------------------------------------------------------------------
2023-10-16 20:18:22,610 Training Params:
2023-10-16 20:18:22,610  - learning_rate: "5e-05" 
2023-10-16 20:18:22,610  - mini_batch_size: "8"
2023-10-16 20:18:22,610  - max_epochs: "10"
2023-10-16 20:18:22,610  - shuffle: "True"
2023-10-16 20:18:22,610 ----------------------------------------------------------------------------------------------------
2023-10-16 20:18:22,610 Plugins:
2023-10-16 20:18:22,610  - LinearScheduler | warmup_fraction: '0.1'
2023-10-16 20:18:22,610 ----------------------------------------------------------------------------------------------------
2023-10-16 20:18:22,610 Final evaluation on model from best epoch (best-model.pt)
2023-10-16 20:18:22,610  - metric: "('micro avg', 'f1-score')"
2023-10-16 20:18:22,610 ----------------------------------------------------------------------------------------------------
2023-10-16 20:18:22,610 Computation:
2023-10-16 20:18:22,610  - compute on device: cuda:0
2023-10-16 20:18:22,610  - embedding storage: none
2023-10-16 20:18:22,610 ----------------------------------------------------------------------------------------------------
2023-10-16 20:18:22,610 Model training base path: "hmbench-newseye/sv-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4"
2023-10-16 20:18:22,610 ----------------------------------------------------------------------------------------------------
2023-10-16 20:18:22,610 ----------------------------------------------------------------------------------------------------
2023-10-16 20:18:23,900 epoch 1 - iter 13/136 - loss 2.93136957 - time (sec): 1.29 - samples/sec: 3687.97 - lr: 0.000004 - momentum: 0.000000
2023-10-16 20:18:25,583 epoch 1 - iter 26/136 - loss 2.61761304 - time (sec): 2.97 - samples/sec: 3560.79 - lr: 0.000009 - momentum: 0.000000
2023-10-16 20:18:27,189 epoch 1 - iter 39/136 - loss 2.10292372 - time (sec): 4.58 - samples/sec: 3480.42 - lr: 0.000014 - momentum: 0.000000
2023-10-16 20:18:28,654 epoch 1 - iter 52/136 - loss 1.69932419 - time (sec): 6.04 - samples/sec: 3541.03 - lr: 0.000019 - momentum: 0.000000
2023-10-16 20:18:30,218 epoch 1 - iter 65/136 - loss 1.46083257 - time (sec): 7.61 - samples/sec: 3509.89 - lr: 0.000024 - momentum: 0.000000
2023-10-16 20:18:31,384 epoch 1 - iter 78/136 - loss 1.32435059 - time (sec): 8.77 - samples/sec: 3550.71 - lr: 0.000028 - momentum: 0.000000
2023-10-16 20:18:32,960 epoch 1 - iter 91/136 - loss 1.19352850 - time (sec): 10.35 - samples/sec: 3485.30 - lr: 0.000033 - momentum: 0.000000
2023-10-16 20:18:34,200 epoch 1 - iter 104/136 - loss 1.10278115 - time (sec): 11.59 - samples/sec: 3501.34 - lr: 0.000038 - momentum: 0.000000
2023-10-16 20:18:35,599 epoch 1 - iter 117/136 - loss 1.01082586 - time (sec): 12.99 - samples/sec: 3499.00 - lr: 0.000043 - momentum: 0.000000
2023-10-16 20:18:36,934 epoch 1 - iter 130/136 - loss 0.93871330 - time (sec): 14.32 - samples/sec: 3480.74 - lr: 0.000047 - momentum: 0.000000
2023-10-16 20:18:37,489 ----------------------------------------------------------------------------------------------------
2023-10-16 20:18:37,489 EPOCH 1 done: loss 0.9142 - lr: 0.000047
2023-10-16 20:18:38,542 DEV : loss 0.17539678514003754 - f1-score (micro avg)  0.6643
2023-10-16 20:18:38,546 saving best model
2023-10-16 20:18:38,883 ----------------------------------------------------------------------------------------------------
2023-10-16 20:18:40,211 epoch 2 - iter 13/136 - loss 0.22301634 - time (sec): 1.33 - samples/sec: 3488.45 - lr: 0.000050 - momentum: 0.000000
2023-10-16 20:18:41,522 epoch 2 - iter 26/136 - loss 0.18431598 - time (sec): 2.64 - samples/sec: 3631.46 - lr: 0.000049 - momentum: 0.000000
2023-10-16 20:18:42,978 epoch 2 - iter 39/136 - loss 0.16140995 - time (sec): 4.09 - samples/sec: 3598.49 - lr: 0.000048 - momentum: 0.000000
2023-10-16 20:18:44,206 epoch 2 - iter 52/136 - loss 0.17264568 - time (sec): 5.32 - samples/sec: 3718.67 - lr: 0.000048 - momentum: 0.000000
2023-10-16 20:18:45,431 epoch 2 - iter 65/136 - loss 0.18654532 - time (sec): 6.55 - samples/sec: 3641.40 - lr: 0.000047 - momentum: 0.000000
2023-10-16 20:18:46,877 epoch 2 - iter 78/136 - loss 0.18635291 - time (sec): 7.99 - samples/sec: 3574.94 - lr: 0.000047 - momentum: 0.000000
2023-10-16 20:18:48,524 epoch 2 - iter 91/136 - loss 0.17676252 - time (sec): 9.64 - samples/sec: 3538.90 - lr: 0.000046 - momentum: 0.000000
2023-10-16 20:18:49,939 epoch 2 - iter 104/136 - loss 0.16965661 - time (sec): 11.05 - samples/sec: 3571.79 - lr: 0.000046 - momentum: 0.000000
2023-10-16 20:18:51,488 epoch 2 - iter 117/136 - loss 0.16802195 - time (sec): 12.60 - samples/sec: 3573.08 - lr: 0.000045 - momentum: 0.000000
2023-10-16 20:18:52,961 epoch 2 - iter 130/136 - loss 0.16391174 - time (sec): 14.08 - samples/sec: 3553.33 - lr: 0.000045 - momentum: 0.000000
2023-10-16 20:18:53,453 ----------------------------------------------------------------------------------------------------
2023-10-16 20:18:53,453 EPOCH 2 done: loss 0.1653 - lr: 0.000045
2023-10-16 20:18:54,968 DEV : loss 0.14248891174793243 - f1-score (micro avg)  0.691
2023-10-16 20:18:54,972 saving best model
2023-10-16 20:18:55,435 ----------------------------------------------------------------------------------------------------
2023-10-16 20:18:56,982 epoch 3 - iter 13/136 - loss 0.10095872 - time (sec): 1.55 - samples/sec: 3543.51 - lr: 0.000044 - momentum: 0.000000
2023-10-16 20:18:58,419 epoch 3 - iter 26/136 - loss 0.10478173 - time (sec): 2.98 - samples/sec: 3660.03 - lr: 0.000043 - momentum: 0.000000
2023-10-16 20:18:59,853 epoch 3 - iter 39/136 - loss 0.09423993 - time (sec): 4.42 - samples/sec: 3552.60 - lr: 0.000043 - momentum: 0.000000
2023-10-16 20:19:01,429 epoch 3 - iter 52/136 - loss 0.09587897 - time (sec): 5.99 - samples/sec: 3509.06 - lr: 0.000042 - momentum: 0.000000
2023-10-16 20:19:02,600 epoch 3 - iter 65/136 - loss 0.09997083 - time (sec): 7.16 - samples/sec: 3492.72 - lr: 0.000042 - momentum: 0.000000
2023-10-16 20:19:03,950 epoch 3 - iter 78/136 - loss 0.09751295 - time (sec): 8.51 - samples/sec: 3489.66 - lr: 0.000041 - momentum: 0.000000
2023-10-16 20:19:05,435 epoch 3 - iter 91/136 - loss 0.09486572 - time (sec): 10.00 - samples/sec: 3532.44 - lr: 0.000041 - momentum: 0.000000
2023-10-16 20:19:06,726 epoch 3 - iter 104/136 - loss 0.09199902 - time (sec): 11.29 - samples/sec: 3559.17 - lr: 0.000040 - momentum: 0.000000
2023-10-16 20:19:08,133 epoch 3 - iter 117/136 - loss 0.08768794 - time (sec): 12.70 - samples/sec: 3551.74 - lr: 0.000040 - momentum: 0.000000
2023-10-16 20:19:09,588 epoch 3 - iter 130/136 - loss 0.08763564 - time (sec): 14.15 - samples/sec: 3526.52 - lr: 0.000039 - momentum: 0.000000
2023-10-16 20:19:10,164 ----------------------------------------------------------------------------------------------------
2023-10-16 20:19:10,165 EPOCH 3 done: loss 0.0866 - lr: 0.000039
2023-10-16 20:19:11,832 DEV : loss 0.10237669199705124 - f1-score (micro avg)  0.8268
2023-10-16 20:19:11,836 saving best model
2023-10-16 20:19:12,290 ----------------------------------------------------------------------------------------------------
2023-10-16 20:19:13,716 epoch 4 - iter 13/136 - loss 0.08431575 - time (sec): 1.42 - samples/sec: 3427.07 - lr: 0.000038 - momentum: 0.000000
2023-10-16 20:19:15,238 epoch 4 - iter 26/136 - loss 0.06713900 - time (sec): 2.95 - samples/sec: 3482.32 - lr: 0.000038 - momentum: 0.000000
2023-10-16 20:19:16,482 epoch 4 - iter 39/136 - loss 0.05765410 - time (sec): 4.19 - samples/sec: 3551.75 - lr: 0.000037 - momentum: 0.000000
2023-10-16 20:19:17,877 epoch 4 - iter 52/136 - loss 0.05665901 - time (sec): 5.58 - samples/sec: 3682.64 - lr: 0.000037 - momentum: 0.000000
2023-10-16 20:19:19,212 epoch 4 - iter 65/136 - loss 0.05979582 - time (sec): 6.92 - samples/sec: 3637.82 - lr: 0.000036 - momentum: 0.000000
2023-10-16 20:19:20,790 epoch 4 - iter 78/136 - loss 0.05790229 - time (sec): 8.50 - samples/sec: 3623.54 - lr: 0.000036 - momentum: 0.000000
2023-10-16 20:19:22,120 epoch 4 - iter 91/136 - loss 0.05693213 - time (sec): 9.83 - samples/sec: 3606.14 - lr: 0.000035 - momentum: 0.000000
2023-10-16 20:19:23,630 epoch 4 - iter 104/136 - loss 0.05628982 - time (sec): 11.34 - samples/sec: 3579.50 - lr: 0.000035 - momentum: 0.000000
2023-10-16 20:19:25,016 epoch 4 - iter 117/136 - loss 0.05352644 - time (sec): 12.72 - samples/sec: 3590.41 - lr: 0.000034 - momentum: 0.000000
2023-10-16 20:19:26,241 epoch 4 - iter 130/136 - loss 0.05384621 - time (sec): 13.95 - samples/sec: 3567.78 - lr: 0.000034 - momentum: 0.000000
2023-10-16 20:19:26,852 ----------------------------------------------------------------------------------------------------
2023-10-16 20:19:26,852 EPOCH 4 done: loss 0.0531 - lr: 0.000034
2023-10-16 20:19:28,342 DEV : loss 0.1108362078666687 - f1-score (micro avg)  0.792
2023-10-16 20:19:28,347 ----------------------------------------------------------------------------------------------------
2023-10-16 20:19:29,788 epoch 5 - iter 13/136 - loss 0.04268788 - time (sec): 1.44 - samples/sec: 3396.75 - lr: 0.000033 - momentum: 0.000000
2023-10-16 20:19:31,041 epoch 5 - iter 26/136 - loss 0.03670220 - time (sec): 2.69 - samples/sec: 3419.76 - lr: 0.000032 - momentum: 0.000000
2023-10-16 20:19:32,272 epoch 5 - iter 39/136 - loss 0.04010108 - time (sec): 3.92 - samples/sec: 3646.72 - lr: 0.000032 - momentum: 0.000000
2023-10-16 20:19:33,713 epoch 5 - iter 52/136 - loss 0.04362300 - time (sec): 5.37 - samples/sec: 3515.55 - lr: 0.000031 - momentum: 0.000000
2023-10-16 20:19:35,275 epoch 5 - iter 65/136 - loss 0.03800478 - time (sec): 6.93 - samples/sec: 3481.28 - lr: 0.000031 - momentum: 0.000000
2023-10-16 20:19:36,599 epoch 5 - iter 78/136 - loss 0.03549079 - time (sec): 8.25 - samples/sec: 3546.96 - lr: 0.000030 - momentum: 0.000000
2023-10-16 20:19:37,986 epoch 5 - iter 91/136 - loss 0.03458614 - time (sec): 9.64 - samples/sec: 3543.08 - lr: 0.000030 - momentum: 0.000000
2023-10-16 20:19:39,580 epoch 5 - iter 104/136 - loss 0.03257155 - time (sec): 11.23 - samples/sec: 3549.79 - lr: 0.000029 - momentum: 0.000000
2023-10-16 20:19:40,937 epoch 5 - iter 117/136 - loss 0.03505263 - time (sec): 12.59 - samples/sec: 3533.61 - lr: 0.000029 - momentum: 0.000000
2023-10-16 20:19:42,362 epoch 5 - iter 130/136 - loss 0.03522794 - time (sec): 14.01 - samples/sec: 3540.70 - lr: 0.000028 - momentum: 0.000000
2023-10-16 20:19:43,035 ----------------------------------------------------------------------------------------------------
2023-10-16 20:19:43,036 EPOCH 5 done: loss 0.0344 - lr: 0.000028
2023-10-16 20:19:44,757 DEV : loss 0.12420879304409027 - f1-score (micro avg)  0.8015
2023-10-16 20:19:44,762 ----------------------------------------------------------------------------------------------------
2023-10-16 20:19:46,094 epoch 6 - iter 13/136 - loss 0.01916100 - time (sec): 1.33 - samples/sec: 3326.19 - lr: 0.000027 - momentum: 0.000000
2023-10-16 20:19:47,511 epoch 6 - iter 26/136 - loss 0.02420091 - time (sec): 2.75 - samples/sec: 3358.03 - lr: 0.000027 - momentum: 0.000000
2023-10-16 20:19:49,067 epoch 6 - iter 39/136 - loss 0.02128442 - time (sec): 4.30 - samples/sec: 3389.40 - lr: 0.000026 - momentum: 0.000000
2023-10-16 20:19:50,714 epoch 6 - iter 52/136 - loss 0.02244990 - time (sec): 5.95 - samples/sec: 3469.10 - lr: 0.000026 - momentum: 0.000000
2023-10-16 20:19:52,211 epoch 6 - iter 65/136 - loss 0.02199431 - time (sec): 7.45 - samples/sec: 3475.38 - lr: 0.000025 - momentum: 0.000000
2023-10-16 20:19:53,518 epoch 6 - iter 78/136 - loss 0.02434853 - time (sec): 8.76 - samples/sec: 3477.60 - lr: 0.000025 - momentum: 0.000000
2023-10-16 20:19:54,879 epoch 6 - iter 91/136 - loss 0.02513952 - time (sec): 10.12 - samples/sec: 3445.86 - lr: 0.000024 - momentum: 0.000000
2023-10-16 20:19:56,241 epoch 6 - iter 104/136 - loss 0.02469020 - time (sec): 11.48 - samples/sec: 3465.60 - lr: 0.000024 - momentum: 0.000000
2023-10-16 20:19:57,761 epoch 6 - iter 117/136 - loss 0.02336871 - time (sec): 13.00 - samples/sec: 3473.17 - lr: 0.000023 - momentum: 0.000000
2023-10-16 20:19:59,055 epoch 6 - iter 130/136 - loss 0.02303322 - time (sec): 14.29 - samples/sec: 3518.84 - lr: 0.000023 - momentum: 0.000000
2023-10-16 20:19:59,504 ----------------------------------------------------------------------------------------------------
2023-10-16 20:19:59,505 EPOCH 6 done: loss 0.0235 - lr: 0.000023
2023-10-16 20:20:01,009 DEV : loss 0.1299697607755661 - f1-score (micro avg)  0.82
2023-10-16 20:20:01,015 ----------------------------------------------------------------------------------------------------
2023-10-16 20:20:02,378 epoch 7 - iter 13/136 - loss 0.02201266 - time (sec): 1.36 - samples/sec: 3644.27 - lr: 0.000022 - momentum: 0.000000
2023-10-16 20:20:04,027 epoch 7 - iter 26/136 - loss 0.01585502 - time (sec): 3.01 - samples/sec: 3607.62 - lr: 0.000021 - momentum: 0.000000
2023-10-16 20:20:05,485 epoch 7 - iter 39/136 - loss 0.01813674 - time (sec): 4.47 - samples/sec: 3493.68 - lr: 0.000021 - momentum: 0.000000
2023-10-16 20:20:07,060 epoch 7 - iter 52/136 - loss 0.01977797 - time (sec): 6.04 - samples/sec: 3551.44 - lr: 0.000020 - momentum: 0.000000
2023-10-16 20:20:08,369 epoch 7 - iter 65/136 - loss 0.01878455 - time (sec): 7.35 - samples/sec: 3549.15 - lr: 0.000020 - momentum: 0.000000
2023-10-16 20:20:09,893 epoch 7 - iter 78/136 - loss 0.01847453 - time (sec): 8.88 - samples/sec: 3555.26 - lr: 0.000019 - momentum: 0.000000
2023-10-16 20:20:11,172 epoch 7 - iter 91/136 - loss 0.01767757 - time (sec): 10.16 - samples/sec: 3562.64 - lr: 0.000019 - momentum: 0.000000
2023-10-16 20:20:12,435 epoch 7 - iter 104/136 - loss 0.01671361 - time (sec): 11.42 - samples/sec: 3581.10 - lr: 0.000018 - momentum: 0.000000
2023-10-16 20:20:13,763 epoch 7 - iter 117/136 - loss 0.01655957 - time (sec): 12.75 - samples/sec: 3559.24 - lr: 0.000018 - momentum: 0.000000
2023-10-16 20:20:15,116 epoch 7 - iter 130/136 - loss 0.01641038 - time (sec): 14.10 - samples/sec: 3556.12 - lr: 0.000017 - momentum: 0.000000
2023-10-16 20:20:15,632 ----------------------------------------------------------------------------------------------------
2023-10-16 20:20:15,632 EPOCH 7 done: loss 0.0160 - lr: 0.000017
2023-10-16 20:20:17,148 DEV : loss 0.13152331113815308 - f1-score (micro avg)  0.8315
2023-10-16 20:20:17,154 saving best model
2023-10-16 20:20:17,607 ----------------------------------------------------------------------------------------------------
2023-10-16 20:20:19,128 epoch 8 - iter 13/136 - loss 0.01402109 - time (sec): 1.52 - samples/sec: 2768.32 - lr: 0.000016 - momentum: 0.000000
2023-10-16 20:20:20,447 epoch 8 - iter 26/136 - loss 0.01902129 - time (sec): 2.84 - samples/sec: 3178.52 - lr: 0.000016 - momentum: 0.000000
2023-10-16 20:20:21,607 epoch 8 - iter 39/136 - loss 0.01608610 - time (sec): 4.00 - samples/sec: 3256.67 - lr: 0.000015 - momentum: 0.000000
2023-10-16 20:20:23,057 epoch 8 - iter 52/136 - loss 0.01326992 - time (sec): 5.45 - samples/sec: 3408.57 - lr: 0.000015 - momentum: 0.000000
2023-10-16 20:20:24,346 epoch 8 - iter 65/136 - loss 0.01198353 - time (sec): 6.74 - samples/sec: 3474.97 - lr: 0.000014 - momentum: 0.000000
2023-10-16 20:20:25,975 epoch 8 - iter 78/136 - loss 0.01138949 - time (sec): 8.37 - samples/sec: 3455.20 - lr: 0.000014 - momentum: 0.000000
2023-10-16 20:20:27,579 epoch 8 - iter 91/136 - loss 0.01277453 - time (sec): 9.97 - samples/sec: 3455.56 - lr: 0.000013 - momentum: 0.000000
2023-10-16 20:20:28,873 epoch 8 - iter 104/136 - loss 0.01291802 - time (sec): 11.26 - samples/sec: 3477.15 - lr: 0.000013 - momentum: 0.000000
2023-10-16 20:20:30,352 epoch 8 - iter 117/136 - loss 0.01246003 - time (sec): 12.74 - samples/sec: 3471.33 - lr: 0.000012 - momentum: 0.000000
2023-10-16 20:20:31,831 epoch 8 - iter 130/136 - loss 0.01146785 - time (sec): 14.22 - samples/sec: 3491.93 - lr: 0.000012 - momentum: 0.000000
2023-10-16 20:20:32,488 ----------------------------------------------------------------------------------------------------
2023-10-16 20:20:32,488 EPOCH 8 done: loss 0.0123 - lr: 0.000012
2023-10-16 20:20:33,976 DEV : loss 0.15120868384838104 - f1-score (micro avg)  0.8192
2023-10-16 20:20:33,981 ----------------------------------------------------------------------------------------------------
2023-10-16 20:20:35,606 epoch 9 - iter 13/136 - loss 0.00940542 - time (sec): 1.62 - samples/sec: 3592.17 - lr: 0.000011 - momentum: 0.000000
2023-10-16 20:20:36,941 epoch 9 - iter 26/136 - loss 0.00670356 - time (sec): 2.96 - samples/sec: 3633.67 - lr: 0.000010 - momentum: 0.000000
2023-10-16 20:20:38,165 epoch 9 - iter 39/136 - loss 0.00947777 - time (sec): 4.18 - samples/sec: 3542.21 - lr: 0.000010 - momentum: 0.000000
2023-10-16 20:20:39,685 epoch 9 - iter 52/136 - loss 0.00891002 - time (sec): 5.70 - samples/sec: 3538.63 - lr: 0.000009 - momentum: 0.000000
2023-10-16 20:20:41,079 epoch 9 - iter 65/136 - loss 0.00918508 - time (sec): 7.10 - samples/sec: 3529.78 - lr: 0.000009 - momentum: 0.000000
2023-10-16 20:20:42,396 epoch 9 - iter 78/136 - loss 0.00934079 - time (sec): 8.41 - samples/sec: 3592.02 - lr: 0.000008 - momentum: 0.000000
2023-10-16 20:20:43,945 epoch 9 - iter 91/136 - loss 0.00873731 - time (sec): 9.96 - samples/sec: 3549.63 - lr: 0.000008 - momentum: 0.000000
2023-10-16 20:20:45,515 epoch 9 - iter 104/136 - loss 0.00839287 - time (sec): 11.53 - samples/sec: 3560.14 - lr: 0.000007 - momentum: 0.000000
2023-10-16 20:20:46,878 epoch 9 - iter 117/136 - loss 0.00857232 - time (sec): 12.90 - samples/sec: 3579.75 - lr: 0.000007 - momentum: 0.000000
2023-10-16 20:20:48,163 epoch 9 - iter 130/136 - loss 0.01058054 - time (sec): 14.18 - samples/sec: 3549.23 - lr: 0.000006 - momentum: 0.000000
2023-10-16 20:20:48,734 ----------------------------------------------------------------------------------------------------
2023-10-16 20:20:48,735 EPOCH 9 done: loss 0.0106 - lr: 0.000006
2023-10-16 20:20:50,191 DEV : loss 0.14968341588974 - f1-score (micro avg)  0.8175
2023-10-16 20:20:50,195 ----------------------------------------------------------------------------------------------------
2023-10-16 20:20:51,766 epoch 10 - iter 13/136 - loss 0.00201920 - time (sec): 1.57 - samples/sec: 3363.38 - lr: 0.000005 - momentum: 0.000000
2023-10-16 20:20:52,880 epoch 10 - iter 26/136 - loss 0.00257635 - time (sec): 2.68 - samples/sec: 3418.54 - lr: 0.000005 - momentum: 0.000000
2023-10-16 20:20:54,377 epoch 10 - iter 39/136 - loss 0.00284480 - time (sec): 4.18 - samples/sec: 3228.03 - lr: 0.000004 - momentum: 0.000000
2023-10-16 20:20:55,815 epoch 10 - iter 52/136 - loss 0.00540897 - time (sec): 5.62 - samples/sec: 3338.60 - lr: 0.000004 - momentum: 0.000000
2023-10-16 20:20:57,292 epoch 10 - iter 65/136 - loss 0.00496823 - time (sec): 7.10 - samples/sec: 3352.13 - lr: 0.000003 - momentum: 0.000000
2023-10-16 20:20:58,618 epoch 10 - iter 78/136 - loss 0.00534676 - time (sec): 8.42 - samples/sec: 3351.23 - lr: 0.000003 - momentum: 0.000000
2023-10-16 20:21:00,051 epoch 10 - iter 91/136 - loss 0.00574925 - time (sec): 9.85 - samples/sec: 3392.70 - lr: 0.000002 - momentum: 0.000000
2023-10-16 20:21:01,333 epoch 10 - iter 104/136 - loss 0.00664022 - time (sec): 11.14 - samples/sec: 3429.83 - lr: 0.000002 - momentum: 0.000000
2023-10-16 20:21:02,990 epoch 10 - iter 117/136 - loss 0.00799959 - time (sec): 12.79 - samples/sec: 3422.62 - lr: 0.000001 - momentum: 0.000000
2023-10-16 20:21:04,396 epoch 10 - iter 130/136 - loss 0.00826072 - time (sec): 14.20 - samples/sec: 3483.83 - lr: 0.000000 - momentum: 0.000000
2023-10-16 20:21:05,155 ----------------------------------------------------------------------------------------------------
2023-10-16 20:21:05,155 EPOCH 10 done: loss 0.0080 - lr: 0.000000
2023-10-16 20:21:06,676 DEV : loss 0.15046021342277527 - f1-score (micro avg)  0.8324
2023-10-16 20:21:06,681 saving best model
2023-10-16 20:21:07,513 ----------------------------------------------------------------------------------------------------
2023-10-16 20:21:07,514 Loading model from best epoch ...
2023-10-16 20:21:09,210 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd, S-ORG, B-ORG, E-ORG, I-ORG
2023-10-16 20:21:11,380 
Results:
- F-score (micro) 0.7767
- F-score (macro) 0.7354
- Accuracy 0.6543

By class:
              precision    recall  f1-score   support

         LOC     0.8112    0.8814    0.8449       312
         PER     0.6628    0.8221    0.7339       208
         ORG     0.5306    0.4727    0.5000        55
   HumanProd     0.7586    1.0000    0.8627        22

   micro avg     0.7319    0.8275    0.7767       597
   macro avg     0.6908    0.7941    0.7354       597
weighted avg     0.7317    0.8275    0.7751       597

2023-10-16 20:21:11,380 ----------------------------------------------------------------------------------------------------