File size: 24,027 Bytes
8589b76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
2023-10-16 22:55:24,117 ----------------------------------------------------------------------------------------------------
2023-10-16 22:55:24,118 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=13, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-16 22:55:24,118 ----------------------------------------------------------------------------------------------------
2023-10-16 22:55:24,118 MultiCorpus: 6183 train + 680 dev + 2113 test sentences
 - NER_HIPE_2022 Corpus: 6183 train + 680 dev + 2113 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/topres19th/en/with_doc_seperator
2023-10-16 22:55:24,118 ----------------------------------------------------------------------------------------------------
2023-10-16 22:55:24,118 Train:  6183 sentences
2023-10-16 22:55:24,118         (train_with_dev=False, train_with_test=False)
2023-10-16 22:55:24,118 ----------------------------------------------------------------------------------------------------
2023-10-16 22:55:24,118 Training Params:
2023-10-16 22:55:24,118  - learning_rate: "3e-05" 
2023-10-16 22:55:24,118  - mini_batch_size: "4"
2023-10-16 22:55:24,119  - max_epochs: "10"
2023-10-16 22:55:24,119  - shuffle: "True"
2023-10-16 22:55:24,119 ----------------------------------------------------------------------------------------------------
2023-10-16 22:55:24,119 Plugins:
2023-10-16 22:55:24,119  - LinearScheduler | warmup_fraction: '0.1'
2023-10-16 22:55:24,119 ----------------------------------------------------------------------------------------------------
2023-10-16 22:55:24,119 Final evaluation on model from best epoch (best-model.pt)
2023-10-16 22:55:24,119  - metric: "('micro avg', 'f1-score')"
2023-10-16 22:55:24,119 ----------------------------------------------------------------------------------------------------
2023-10-16 22:55:24,119 Computation:
2023-10-16 22:55:24,119  - compute on device: cuda:0
2023-10-16 22:55:24,119  - embedding storage: none
2023-10-16 22:55:24,119 ----------------------------------------------------------------------------------------------------
2023-10-16 22:55:24,119 Model training base path: "hmbench-topres19th/en-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4"
2023-10-16 22:55:24,119 ----------------------------------------------------------------------------------------------------
2023-10-16 22:55:24,119 ----------------------------------------------------------------------------------------------------
2023-10-16 22:55:30,952 epoch 1 - iter 154/1546 - loss 2.02538090 - time (sec): 6.83 - samples/sec: 1748.19 - lr: 0.000003 - momentum: 0.000000
2023-10-16 22:55:37,944 epoch 1 - iter 308/1546 - loss 1.10084678 - time (sec): 13.82 - samples/sec: 1753.65 - lr: 0.000006 - momentum: 0.000000
2023-10-16 22:55:45,034 epoch 1 - iter 462/1546 - loss 0.78647526 - time (sec): 20.91 - samples/sec: 1743.25 - lr: 0.000009 - momentum: 0.000000
2023-10-16 22:55:51,980 epoch 1 - iter 616/1546 - loss 0.62446099 - time (sec): 27.86 - samples/sec: 1741.14 - lr: 0.000012 - momentum: 0.000000
2023-10-16 22:55:58,942 epoch 1 - iter 770/1546 - loss 0.52442561 - time (sec): 34.82 - samples/sec: 1740.59 - lr: 0.000015 - momentum: 0.000000
2023-10-16 22:56:06,056 epoch 1 - iter 924/1546 - loss 0.45595178 - time (sec): 41.94 - samples/sec: 1747.95 - lr: 0.000018 - momentum: 0.000000
2023-10-16 22:56:12,979 epoch 1 - iter 1078/1546 - loss 0.40906220 - time (sec): 48.86 - samples/sec: 1748.23 - lr: 0.000021 - momentum: 0.000000
2023-10-16 22:56:19,931 epoch 1 - iter 1232/1546 - loss 0.36522487 - time (sec): 55.81 - samples/sec: 1782.15 - lr: 0.000024 - momentum: 0.000000
2023-10-16 22:56:26,757 epoch 1 - iter 1386/1546 - loss 0.33735166 - time (sec): 62.64 - samples/sec: 1778.01 - lr: 0.000027 - momentum: 0.000000
2023-10-16 22:56:33,780 epoch 1 - iter 1540/1546 - loss 0.31510388 - time (sec): 69.66 - samples/sec: 1778.34 - lr: 0.000030 - momentum: 0.000000
2023-10-16 22:56:34,038 ----------------------------------------------------------------------------------------------------
2023-10-16 22:56:34,038 EPOCH 1 done: loss 0.3141 - lr: 0.000030
2023-10-16 22:56:35,849 DEV : loss 0.09308421611785889 - f1-score (micro avg)  0.6875
2023-10-16 22:56:35,862 saving best model
2023-10-16 22:56:36,248 ----------------------------------------------------------------------------------------------------
2023-10-16 22:56:43,180 epoch 2 - iter 154/1546 - loss 0.08398905 - time (sec): 6.93 - samples/sec: 1878.88 - lr: 0.000030 - momentum: 0.000000
2023-10-16 22:56:50,219 epoch 2 - iter 308/1546 - loss 0.09542073 - time (sec): 13.97 - samples/sec: 1876.03 - lr: 0.000029 - momentum: 0.000000
2023-10-16 22:56:57,201 epoch 2 - iter 462/1546 - loss 0.08471087 - time (sec): 20.95 - samples/sec: 1892.41 - lr: 0.000029 - momentum: 0.000000
2023-10-16 22:57:04,205 epoch 2 - iter 616/1546 - loss 0.08071299 - time (sec): 27.95 - samples/sec: 1880.42 - lr: 0.000029 - momentum: 0.000000
2023-10-16 22:57:11,180 epoch 2 - iter 770/1546 - loss 0.08054955 - time (sec): 34.93 - samples/sec: 1852.22 - lr: 0.000028 - momentum: 0.000000
2023-10-16 22:57:18,042 epoch 2 - iter 924/1546 - loss 0.08042291 - time (sec): 41.79 - samples/sec: 1822.50 - lr: 0.000028 - momentum: 0.000000
2023-10-16 22:57:24,993 epoch 2 - iter 1078/1546 - loss 0.07999482 - time (sec): 48.74 - samples/sec: 1795.97 - lr: 0.000028 - momentum: 0.000000
2023-10-16 22:57:31,929 epoch 2 - iter 1232/1546 - loss 0.08098848 - time (sec): 55.68 - samples/sec: 1795.29 - lr: 0.000027 - momentum: 0.000000
2023-10-16 22:57:38,721 epoch 2 - iter 1386/1546 - loss 0.08104893 - time (sec): 62.47 - samples/sec: 1792.03 - lr: 0.000027 - momentum: 0.000000
2023-10-16 22:57:45,660 epoch 2 - iter 1540/1546 - loss 0.08159740 - time (sec): 69.41 - samples/sec: 1785.43 - lr: 0.000027 - momentum: 0.000000
2023-10-16 22:57:45,929 ----------------------------------------------------------------------------------------------------
2023-10-16 22:57:45,930 EPOCH 2 done: loss 0.0815 - lr: 0.000027
2023-10-16 22:57:48,443 DEV : loss 0.07893380522727966 - f1-score (micro avg)  0.7179
2023-10-16 22:57:48,456 saving best model
2023-10-16 22:57:48,916 ----------------------------------------------------------------------------------------------------
2023-10-16 22:57:55,989 epoch 3 - iter 154/1546 - loss 0.05779724 - time (sec): 7.07 - samples/sec: 1866.59 - lr: 0.000026 - momentum: 0.000000
2023-10-16 22:58:02,957 epoch 3 - iter 308/1546 - loss 0.05329053 - time (sec): 14.04 - samples/sec: 1877.95 - lr: 0.000026 - momentum: 0.000000
2023-10-16 22:58:09,919 epoch 3 - iter 462/1546 - loss 0.05290610 - time (sec): 21.00 - samples/sec: 1827.68 - lr: 0.000026 - momentum: 0.000000
2023-10-16 22:58:16,734 epoch 3 - iter 616/1546 - loss 0.05251651 - time (sec): 27.82 - samples/sec: 1852.75 - lr: 0.000025 - momentum: 0.000000
2023-10-16 22:58:23,802 epoch 3 - iter 770/1546 - loss 0.05620252 - time (sec): 34.88 - samples/sec: 1830.94 - lr: 0.000025 - momentum: 0.000000
2023-10-16 22:58:30,728 epoch 3 - iter 924/1546 - loss 0.05327156 - time (sec): 41.81 - samples/sec: 1810.74 - lr: 0.000025 - momentum: 0.000000
2023-10-16 22:58:37,749 epoch 3 - iter 1078/1546 - loss 0.05179250 - time (sec): 48.83 - samples/sec: 1801.70 - lr: 0.000024 - momentum: 0.000000
2023-10-16 22:58:44,683 epoch 3 - iter 1232/1546 - loss 0.05111602 - time (sec): 55.76 - samples/sec: 1787.00 - lr: 0.000024 - momentum: 0.000000
2023-10-16 22:58:51,659 epoch 3 - iter 1386/1546 - loss 0.05503167 - time (sec): 62.74 - samples/sec: 1784.02 - lr: 0.000024 - momentum: 0.000000
2023-10-16 22:58:58,674 epoch 3 - iter 1540/1546 - loss 0.05356182 - time (sec): 69.76 - samples/sec: 1775.63 - lr: 0.000023 - momentum: 0.000000
2023-10-16 22:58:58,969 ----------------------------------------------------------------------------------------------------
2023-10-16 22:58:58,969 EPOCH 3 done: loss 0.0534 - lr: 0.000023
2023-10-16 22:59:01,104 DEV : loss 0.07748623192310333 - f1-score (micro avg)  0.7722
2023-10-16 22:59:01,123 saving best model
2023-10-16 22:59:01,558 ----------------------------------------------------------------------------------------------------
2023-10-16 22:59:08,656 epoch 4 - iter 154/1546 - loss 0.02829162 - time (sec): 7.10 - samples/sec: 1872.64 - lr: 0.000023 - momentum: 0.000000
2023-10-16 22:59:15,863 epoch 4 - iter 308/1546 - loss 0.03022453 - time (sec): 14.30 - samples/sec: 1765.31 - lr: 0.000023 - momentum: 0.000000
2023-10-16 22:59:23,032 epoch 4 - iter 462/1546 - loss 0.03061131 - time (sec): 21.47 - samples/sec: 1784.48 - lr: 0.000022 - momentum: 0.000000
2023-10-16 22:59:29,960 epoch 4 - iter 616/1546 - loss 0.03200286 - time (sec): 28.40 - samples/sec: 1768.39 - lr: 0.000022 - momentum: 0.000000
2023-10-16 22:59:36,962 epoch 4 - iter 770/1546 - loss 0.03054981 - time (sec): 35.40 - samples/sec: 1754.04 - lr: 0.000022 - momentum: 0.000000
2023-10-16 22:59:44,121 epoch 4 - iter 924/1546 - loss 0.03188868 - time (sec): 42.56 - samples/sec: 1770.99 - lr: 0.000021 - momentum: 0.000000
2023-10-16 22:59:51,180 epoch 4 - iter 1078/1546 - loss 0.03290334 - time (sec): 49.62 - samples/sec: 1762.82 - lr: 0.000021 - momentum: 0.000000
2023-10-16 22:59:58,373 epoch 4 - iter 1232/1546 - loss 0.03474654 - time (sec): 56.81 - samples/sec: 1764.27 - lr: 0.000021 - momentum: 0.000000
2023-10-16 23:00:05,304 epoch 4 - iter 1386/1546 - loss 0.03409150 - time (sec): 63.74 - samples/sec: 1761.62 - lr: 0.000020 - momentum: 0.000000
2023-10-16 23:00:12,109 epoch 4 - iter 1540/1546 - loss 0.03479952 - time (sec): 70.55 - samples/sec: 1757.31 - lr: 0.000020 - momentum: 0.000000
2023-10-16 23:00:12,360 ----------------------------------------------------------------------------------------------------
2023-10-16 23:00:12,360 EPOCH 4 done: loss 0.0349 - lr: 0.000020
2023-10-16 23:00:14,474 DEV : loss 0.096384696662426 - f1-score (micro avg)  0.7439
2023-10-16 23:00:14,487 ----------------------------------------------------------------------------------------------------
2023-10-16 23:00:21,420 epoch 5 - iter 154/1546 - loss 0.02586135 - time (sec): 6.93 - samples/sec: 1708.87 - lr: 0.000020 - momentum: 0.000000
2023-10-16 23:00:28,521 epoch 5 - iter 308/1546 - loss 0.02697778 - time (sec): 14.03 - samples/sec: 1731.12 - lr: 0.000019 - momentum: 0.000000
2023-10-16 23:00:35,515 epoch 5 - iter 462/1546 - loss 0.02633540 - time (sec): 21.03 - samples/sec: 1744.38 - lr: 0.000019 - momentum: 0.000000
2023-10-16 23:00:42,412 epoch 5 - iter 616/1546 - loss 0.02506817 - time (sec): 27.92 - samples/sec: 1769.86 - lr: 0.000019 - momentum: 0.000000
2023-10-16 23:00:49,241 epoch 5 - iter 770/1546 - loss 0.02333240 - time (sec): 34.75 - samples/sec: 1771.95 - lr: 0.000018 - momentum: 0.000000
2023-10-16 23:00:56,162 epoch 5 - iter 924/1546 - loss 0.02299940 - time (sec): 41.67 - samples/sec: 1782.02 - lr: 0.000018 - momentum: 0.000000
2023-10-16 23:01:03,068 epoch 5 - iter 1078/1546 - loss 0.02391515 - time (sec): 48.58 - samples/sec: 1787.02 - lr: 0.000018 - momentum: 0.000000
2023-10-16 23:01:09,932 epoch 5 - iter 1232/1546 - loss 0.02530811 - time (sec): 55.44 - samples/sec: 1782.95 - lr: 0.000017 - momentum: 0.000000
2023-10-16 23:01:16,872 epoch 5 - iter 1386/1546 - loss 0.02533599 - time (sec): 62.38 - samples/sec: 1780.89 - lr: 0.000017 - momentum: 0.000000
2023-10-16 23:01:23,709 epoch 5 - iter 1540/1546 - loss 0.02481519 - time (sec): 69.22 - samples/sec: 1791.49 - lr: 0.000017 - momentum: 0.000000
2023-10-16 23:01:23,966 ----------------------------------------------------------------------------------------------------
2023-10-16 23:01:23,966 EPOCH 5 done: loss 0.0248 - lr: 0.000017
2023-10-16 23:01:26,008 DEV : loss 0.09776511788368225 - f1-score (micro avg)  0.7849
2023-10-16 23:01:26,022 saving best model
2023-10-16 23:01:26,478 ----------------------------------------------------------------------------------------------------
2023-10-16 23:01:33,699 epoch 6 - iter 154/1546 - loss 0.01891335 - time (sec): 7.22 - samples/sec: 1656.83 - lr: 0.000016 - momentum: 0.000000
2023-10-16 23:01:40,520 epoch 6 - iter 308/1546 - loss 0.01505548 - time (sec): 14.04 - samples/sec: 1735.36 - lr: 0.000016 - momentum: 0.000000
2023-10-16 23:01:47,391 epoch 6 - iter 462/1546 - loss 0.01687048 - time (sec): 20.91 - samples/sec: 1770.14 - lr: 0.000016 - momentum: 0.000000
2023-10-16 23:01:54,201 epoch 6 - iter 616/1546 - loss 0.01676100 - time (sec): 27.72 - samples/sec: 1795.31 - lr: 0.000015 - momentum: 0.000000
2023-10-16 23:02:01,043 epoch 6 - iter 770/1546 - loss 0.01743799 - time (sec): 34.56 - samples/sec: 1783.52 - lr: 0.000015 - momentum: 0.000000
2023-10-16 23:02:07,867 epoch 6 - iter 924/1546 - loss 0.01719557 - time (sec): 41.39 - samples/sec: 1786.16 - lr: 0.000015 - momentum: 0.000000
2023-10-16 23:02:14,832 epoch 6 - iter 1078/1546 - loss 0.01686034 - time (sec): 48.35 - samples/sec: 1810.74 - lr: 0.000014 - momentum: 0.000000
2023-10-16 23:02:21,723 epoch 6 - iter 1232/1546 - loss 0.01742908 - time (sec): 55.24 - samples/sec: 1811.68 - lr: 0.000014 - momentum: 0.000000
2023-10-16 23:02:28,514 epoch 6 - iter 1386/1546 - loss 0.01704174 - time (sec): 62.03 - samples/sec: 1803.99 - lr: 0.000014 - momentum: 0.000000
2023-10-16 23:02:35,311 epoch 6 - iter 1540/1546 - loss 0.01782016 - time (sec): 68.83 - samples/sec: 1797.96 - lr: 0.000013 - momentum: 0.000000
2023-10-16 23:02:35,582 ----------------------------------------------------------------------------------------------------
2023-10-16 23:02:35,582 EPOCH 6 done: loss 0.0177 - lr: 0.000013
2023-10-16 23:02:37,681 DEV : loss 0.10087885707616806 - f1-score (micro avg)  0.7967
2023-10-16 23:02:37,694 saving best model
2023-10-16 23:02:38,137 ----------------------------------------------------------------------------------------------------
2023-10-16 23:02:45,059 epoch 7 - iter 154/1546 - loss 0.00882572 - time (sec): 6.92 - samples/sec: 1801.10 - lr: 0.000013 - momentum: 0.000000
2023-10-16 23:02:51,970 epoch 7 - iter 308/1546 - loss 0.00959269 - time (sec): 13.83 - samples/sec: 1837.87 - lr: 0.000013 - momentum: 0.000000
2023-10-16 23:02:58,728 epoch 7 - iter 462/1546 - loss 0.01074153 - time (sec): 20.59 - samples/sec: 1826.45 - lr: 0.000012 - momentum: 0.000000
2023-10-16 23:03:05,614 epoch 7 - iter 616/1546 - loss 0.01103381 - time (sec): 27.48 - samples/sec: 1815.78 - lr: 0.000012 - momentum: 0.000000
2023-10-16 23:03:12,330 epoch 7 - iter 770/1546 - loss 0.01089398 - time (sec): 34.19 - samples/sec: 1795.14 - lr: 0.000012 - momentum: 0.000000
2023-10-16 23:03:19,062 epoch 7 - iter 924/1546 - loss 0.01051405 - time (sec): 40.92 - samples/sec: 1791.40 - lr: 0.000011 - momentum: 0.000000
2023-10-16 23:03:25,860 epoch 7 - iter 1078/1546 - loss 0.01078117 - time (sec): 47.72 - samples/sec: 1789.95 - lr: 0.000011 - momentum: 0.000000
2023-10-16 23:03:32,683 epoch 7 - iter 1232/1546 - loss 0.01046656 - time (sec): 54.55 - samples/sec: 1783.28 - lr: 0.000011 - momentum: 0.000000
2023-10-16 23:03:39,483 epoch 7 - iter 1386/1546 - loss 0.01062877 - time (sec): 61.34 - samples/sec: 1781.78 - lr: 0.000010 - momentum: 0.000000
2023-10-16 23:03:46,278 epoch 7 - iter 1540/1546 - loss 0.01097604 - time (sec): 68.14 - samples/sec: 1816.28 - lr: 0.000010 - momentum: 0.000000
2023-10-16 23:03:46,535 ----------------------------------------------------------------------------------------------------
2023-10-16 23:03:46,535 EPOCH 7 done: loss 0.0109 - lr: 0.000010
2023-10-16 23:03:48,934 DEV : loss 0.1023801639676094 - f1-score (micro avg)  0.7807
2023-10-16 23:03:48,947 ----------------------------------------------------------------------------------------------------
2023-10-16 23:03:55,722 epoch 8 - iter 154/1546 - loss 0.00276108 - time (sec): 6.77 - samples/sec: 1772.81 - lr: 0.000010 - momentum: 0.000000
2023-10-16 23:04:02,248 epoch 8 - iter 308/1546 - loss 0.00679671 - time (sec): 13.30 - samples/sec: 1827.75 - lr: 0.000009 - momentum: 0.000000
2023-10-16 23:04:08,788 epoch 8 - iter 462/1546 - loss 0.00528715 - time (sec): 19.84 - samples/sec: 1852.41 - lr: 0.000009 - momentum: 0.000000
2023-10-16 23:04:15,408 epoch 8 - iter 616/1546 - loss 0.00664770 - time (sec): 26.46 - samples/sec: 1867.03 - lr: 0.000009 - momentum: 0.000000
2023-10-16 23:04:22,270 epoch 8 - iter 770/1546 - loss 0.00694105 - time (sec): 33.32 - samples/sec: 1846.72 - lr: 0.000008 - momentum: 0.000000
2023-10-16 23:04:29,131 epoch 8 - iter 924/1546 - loss 0.00772621 - time (sec): 40.18 - samples/sec: 1837.91 - lr: 0.000008 - momentum: 0.000000
2023-10-16 23:04:35,982 epoch 8 - iter 1078/1546 - loss 0.00795917 - time (sec): 47.03 - samples/sec: 1842.25 - lr: 0.000008 - momentum: 0.000000
2023-10-16 23:04:42,806 epoch 8 - iter 1232/1546 - loss 0.00817950 - time (sec): 53.86 - samples/sec: 1845.29 - lr: 0.000007 - momentum: 0.000000
2023-10-16 23:04:49,669 epoch 8 - iter 1386/1546 - loss 0.00800634 - time (sec): 60.72 - samples/sec: 1838.42 - lr: 0.000007 - momentum: 0.000000
2023-10-16 23:04:56,447 epoch 8 - iter 1540/1546 - loss 0.00792214 - time (sec): 67.50 - samples/sec: 1834.35 - lr: 0.000007 - momentum: 0.000000
2023-10-16 23:04:56,713 ----------------------------------------------------------------------------------------------------
2023-10-16 23:04:56,713 EPOCH 8 done: loss 0.0079 - lr: 0.000007
2023-10-16 23:04:58,765 DEV : loss 0.1137828379869461 - f1-score (micro avg)  0.7879
2023-10-16 23:04:58,779 ----------------------------------------------------------------------------------------------------
2023-10-16 23:05:05,640 epoch 9 - iter 154/1546 - loss 0.00625578 - time (sec): 6.86 - samples/sec: 1822.09 - lr: 0.000006 - momentum: 0.000000
2023-10-16 23:05:12,362 epoch 9 - iter 308/1546 - loss 0.00569991 - time (sec): 13.58 - samples/sec: 1786.38 - lr: 0.000006 - momentum: 0.000000
2023-10-16 23:05:19,230 epoch 9 - iter 462/1546 - loss 0.00580179 - time (sec): 20.45 - samples/sec: 1833.99 - lr: 0.000006 - momentum: 0.000000
2023-10-16 23:05:25,993 epoch 9 - iter 616/1546 - loss 0.00507301 - time (sec): 27.21 - samples/sec: 1813.16 - lr: 0.000005 - momentum: 0.000000
2023-10-16 23:05:32,807 epoch 9 - iter 770/1546 - loss 0.00469977 - time (sec): 34.03 - samples/sec: 1799.76 - lr: 0.000005 - momentum: 0.000000
2023-10-16 23:05:39,691 epoch 9 - iter 924/1546 - loss 0.00605868 - time (sec): 40.91 - samples/sec: 1821.49 - lr: 0.000005 - momentum: 0.000000
2023-10-16 23:05:46,528 epoch 9 - iter 1078/1546 - loss 0.00553326 - time (sec): 47.75 - samples/sec: 1821.57 - lr: 0.000004 - momentum: 0.000000
2023-10-16 23:05:53,539 epoch 9 - iter 1232/1546 - loss 0.00506175 - time (sec): 54.76 - samples/sec: 1815.38 - lr: 0.000004 - momentum: 0.000000
2023-10-16 23:06:00,472 epoch 9 - iter 1386/1546 - loss 0.00474763 - time (sec): 61.69 - samples/sec: 1817.48 - lr: 0.000004 - momentum: 0.000000
2023-10-16 23:06:07,322 epoch 9 - iter 1540/1546 - loss 0.00470313 - time (sec): 68.54 - samples/sec: 1802.45 - lr: 0.000003 - momentum: 0.000000
2023-10-16 23:06:07,604 ----------------------------------------------------------------------------------------------------
2023-10-16 23:06:07,604 EPOCH 9 done: loss 0.0047 - lr: 0.000003
2023-10-16 23:06:09,632 DEV : loss 0.11162678897380829 - f1-score (micro avg)  0.8065
2023-10-16 23:06:09,645 saving best model
2023-10-16 23:06:10,098 ----------------------------------------------------------------------------------------------------
2023-10-16 23:06:16,992 epoch 10 - iter 154/1546 - loss 0.00029590 - time (sec): 6.89 - samples/sec: 1868.58 - lr: 0.000003 - momentum: 0.000000
2023-10-16 23:06:23,924 epoch 10 - iter 308/1546 - loss 0.00287854 - time (sec): 13.82 - samples/sec: 1847.28 - lr: 0.000003 - momentum: 0.000000
2023-10-16 23:06:30,870 epoch 10 - iter 462/1546 - loss 0.00262317 - time (sec): 20.77 - samples/sec: 1847.50 - lr: 0.000002 - momentum: 0.000000
2023-10-16 23:06:37,720 epoch 10 - iter 616/1546 - loss 0.00288842 - time (sec): 27.62 - samples/sec: 1830.00 - lr: 0.000002 - momentum: 0.000000
2023-10-16 23:06:44,747 epoch 10 - iter 770/1546 - loss 0.00280402 - time (sec): 34.65 - samples/sec: 1827.44 - lr: 0.000002 - momentum: 0.000000
2023-10-16 23:06:51,575 epoch 10 - iter 924/1546 - loss 0.00318869 - time (sec): 41.48 - samples/sec: 1806.38 - lr: 0.000001 - momentum: 0.000000
2023-10-16 23:06:58,391 epoch 10 - iter 1078/1546 - loss 0.00298211 - time (sec): 48.29 - samples/sec: 1804.58 - lr: 0.000001 - momentum: 0.000000
2023-10-16 23:07:05,298 epoch 10 - iter 1232/1546 - loss 0.00271568 - time (sec): 55.20 - samples/sec: 1808.08 - lr: 0.000001 - momentum: 0.000000
2023-10-16 23:07:12,158 epoch 10 - iter 1386/1546 - loss 0.00309708 - time (sec): 62.06 - samples/sec: 1794.54 - lr: 0.000000 - momentum: 0.000000
2023-10-16 23:07:19,086 epoch 10 - iter 1540/1546 - loss 0.00330551 - time (sec): 68.99 - samples/sec: 1793.54 - lr: 0.000000 - momentum: 0.000000
2023-10-16 23:07:19,363 ----------------------------------------------------------------------------------------------------
2023-10-16 23:07:19,363 EPOCH 10 done: loss 0.0033 - lr: 0.000000
2023-10-16 23:07:21,467 DEV : loss 0.11447464674711227 - f1-score (micro avg)  0.8
2023-10-16 23:07:21,847 ----------------------------------------------------------------------------------------------------
2023-10-16 23:07:21,848 Loading model from best epoch ...
2023-10-16 23:07:23,353 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-BUILDING, B-BUILDING, E-BUILDING, I-BUILDING, S-STREET, B-STREET, E-STREET, I-STREET
2023-10-16 23:07:29,624 
Results:
- F-score (micro) 0.8094
- F-score (macro) 0.7264
- Accuracy 0.7028

By class:
              precision    recall  f1-score   support

         LOC     0.8396    0.8742    0.8566       946
    BUILDING     0.5812    0.6000    0.5904       185
      STREET     0.7321    0.7321    0.7321        56

   micro avg     0.7946    0.8248    0.8094      1187
   macro avg     0.7176    0.7355    0.7264      1187
weighted avg     0.7942    0.8248    0.8092      1187

2023-10-16 23:07:29,625 ----------------------------------------------------------------------------------------------------