Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- test.tsv +0 -0
- training.log +240 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5965b72e4cb2c5bf3a0e800edd586fdc2dcaff3750d86e2b1c65f420f3cbed83
|
3 |
+
size 443311175
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 00:11:33 0.0000 0.3293 0.0597 0.7119 0.7300 0.7208 0.5864
|
3 |
+
2 00:12:21 0.0000 0.0805 0.0636 0.7164 0.8312 0.7695 0.6314
|
4 |
+
3 00:13:09 0.0000 0.0491 0.0740 0.6899 0.8354 0.7557 0.6168
|
5 |
+
4 00:13:57 0.0000 0.0369 0.0950 0.7835 0.7637 0.7735 0.6464
|
6 |
+
5 00:14:44 0.0000 0.0267 0.0898 0.7452 0.8143 0.7782 0.6498
|
7 |
+
6 00:15:32 0.0000 0.0182 0.1050 0.7610 0.8059 0.7828 0.6609
|
8 |
+
7 00:16:20 0.0000 0.0129 0.1137 0.7316 0.8397 0.7819 0.6568
|
9 |
+
8 00:17:08 0.0000 0.0104 0.1139 0.7358 0.8228 0.7769 0.6522
|
10 |
+
9 00:17:56 0.0000 0.0065 0.1205 0.7683 0.7975 0.7826 0.6632
|
11 |
+
10 00:18:43 0.0000 0.0046 0.1188 0.7500 0.8101 0.7789 0.6575
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-17 00:10:46,564 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-17 00:10:46,565 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-17 00:10:46,565 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-17 00:10:46,565 MultiCorpus: 6183 train + 680 dev + 2113 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 6183 train + 680 dev + 2113 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/topres19th/en/with_doc_seperator
|
53 |
+
2023-10-17 00:10:46,565 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-17 00:10:46,565 Train: 6183 sentences
|
55 |
+
2023-10-17 00:10:46,565 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-17 00:10:46,565 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-17 00:10:46,565 Training Params:
|
58 |
+
2023-10-17 00:10:46,565 - learning_rate: "5e-05"
|
59 |
+
2023-10-17 00:10:46,565 - mini_batch_size: "8"
|
60 |
+
2023-10-17 00:10:46,565 - max_epochs: "10"
|
61 |
+
2023-10-17 00:10:46,565 - shuffle: "True"
|
62 |
+
2023-10-17 00:10:46,566 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-17 00:10:46,566 Plugins:
|
64 |
+
2023-10-17 00:10:46,566 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2023-10-17 00:10:46,566 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-17 00:10:46,566 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2023-10-17 00:10:46,566 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2023-10-17 00:10:46,566 ----------------------------------------------------------------------------------------------------
|
69 |
+
2023-10-17 00:10:46,566 Computation:
|
70 |
+
2023-10-17 00:10:46,566 - compute on device: cuda:0
|
71 |
+
2023-10-17 00:10:46,566 - embedding storage: none
|
72 |
+
2023-10-17 00:10:46,566 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-17 00:10:46,566 Model training base path: "hmbench-topres19th/en-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5"
|
74 |
+
2023-10-17 00:10:46,566 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-10-17 00:10:46,566 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-17 00:10:51,045 epoch 1 - iter 77/773 - loss 2.01913050 - time (sec): 4.48 - samples/sec: 2875.44 - lr: 0.000005 - momentum: 0.000000
|
77 |
+
2023-10-17 00:10:55,420 epoch 1 - iter 154/773 - loss 1.15152095 - time (sec): 8.85 - samples/sec: 2881.70 - lr: 0.000010 - momentum: 0.000000
|
78 |
+
2023-10-17 00:10:59,884 epoch 1 - iter 231/773 - loss 0.83359397 - time (sec): 13.32 - samples/sec: 2834.07 - lr: 0.000015 - momentum: 0.000000
|
79 |
+
2023-10-17 00:11:04,318 epoch 1 - iter 308/773 - loss 0.66484530 - time (sec): 17.75 - samples/sec: 2812.38 - lr: 0.000020 - momentum: 0.000000
|
80 |
+
2023-10-17 00:11:08,928 epoch 1 - iter 385/773 - loss 0.55488029 - time (sec): 22.36 - samples/sec: 2796.56 - lr: 0.000025 - momentum: 0.000000
|
81 |
+
2023-10-17 00:11:13,398 epoch 1 - iter 462/773 - loss 0.48513473 - time (sec): 26.83 - samples/sec: 2767.76 - lr: 0.000030 - momentum: 0.000000
|
82 |
+
2023-10-17 00:11:17,743 epoch 1 - iter 539/773 - loss 0.43220579 - time (sec): 31.18 - samples/sec: 2767.71 - lr: 0.000035 - momentum: 0.000000
|
83 |
+
2023-10-17 00:11:22,171 epoch 1 - iter 616/773 - loss 0.39217814 - time (sec): 35.60 - samples/sec: 2766.34 - lr: 0.000040 - momentum: 0.000000
|
84 |
+
2023-10-17 00:11:26,934 epoch 1 - iter 693/773 - loss 0.35818872 - time (sec): 40.37 - samples/sec: 2755.31 - lr: 0.000045 - momentum: 0.000000
|
85 |
+
2023-10-17 00:11:31,429 epoch 1 - iter 770/773 - loss 0.33013406 - time (sec): 44.86 - samples/sec: 2762.25 - lr: 0.000050 - momentum: 0.000000
|
86 |
+
2023-10-17 00:11:31,575 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-10-17 00:11:31,575 EPOCH 1 done: loss 0.3293 - lr: 0.000050
|
88 |
+
2023-10-17 00:11:33,573 DEV : loss 0.059652842581272125 - f1-score (micro avg) 0.7208
|
89 |
+
2023-10-17 00:11:33,596 saving best model
|
90 |
+
2023-10-17 00:11:33,936 ----------------------------------------------------------------------------------------------------
|
91 |
+
2023-10-17 00:11:38,685 epoch 2 - iter 77/773 - loss 0.08267678 - time (sec): 4.75 - samples/sec: 2784.77 - lr: 0.000049 - momentum: 0.000000
|
92 |
+
2023-10-17 00:11:43,311 epoch 2 - iter 154/773 - loss 0.08055208 - time (sec): 9.37 - samples/sec: 2754.52 - lr: 0.000049 - momentum: 0.000000
|
93 |
+
2023-10-17 00:11:47,825 epoch 2 - iter 231/773 - loss 0.08052395 - time (sec): 13.89 - samples/sec: 2743.62 - lr: 0.000048 - momentum: 0.000000
|
94 |
+
2023-10-17 00:11:52,184 epoch 2 - iter 308/773 - loss 0.08357330 - time (sec): 18.25 - samples/sec: 2741.61 - lr: 0.000048 - momentum: 0.000000
|
95 |
+
2023-10-17 00:11:56,640 epoch 2 - iter 385/773 - loss 0.08382211 - time (sec): 22.70 - samples/sec: 2709.61 - lr: 0.000047 - momentum: 0.000000
|
96 |
+
2023-10-17 00:12:01,104 epoch 2 - iter 462/773 - loss 0.08414725 - time (sec): 27.17 - samples/sec: 2725.32 - lr: 0.000047 - momentum: 0.000000
|
97 |
+
2023-10-17 00:12:05,611 epoch 2 - iter 539/773 - loss 0.08425195 - time (sec): 31.67 - samples/sec: 2738.14 - lr: 0.000046 - momentum: 0.000000
|
98 |
+
2023-10-17 00:12:10,421 epoch 2 - iter 616/773 - loss 0.08124072 - time (sec): 36.48 - samples/sec: 2732.40 - lr: 0.000046 - momentum: 0.000000
|
99 |
+
2023-10-17 00:12:14,839 epoch 2 - iter 693/773 - loss 0.08111029 - time (sec): 40.90 - samples/sec: 2724.98 - lr: 0.000045 - momentum: 0.000000
|
100 |
+
2023-10-17 00:12:19,329 epoch 2 - iter 770/773 - loss 0.08051640 - time (sec): 45.39 - samples/sec: 2731.34 - lr: 0.000044 - momentum: 0.000000
|
101 |
+
2023-10-17 00:12:19,473 ----------------------------------------------------------------------------------------------------
|
102 |
+
2023-10-17 00:12:19,473 EPOCH 2 done: loss 0.0805 - lr: 0.000044
|
103 |
+
2023-10-17 00:12:21,618 DEV : loss 0.06363236904144287 - f1-score (micro avg) 0.7695
|
104 |
+
2023-10-17 00:12:21,632 saving best model
|
105 |
+
2023-10-17 00:12:22,081 ----------------------------------------------------------------------------------------------------
|
106 |
+
2023-10-17 00:12:26,590 epoch 3 - iter 77/773 - loss 0.04146028 - time (sec): 4.51 - samples/sec: 2835.22 - lr: 0.000044 - momentum: 0.000000
|
107 |
+
2023-10-17 00:12:31,330 epoch 3 - iter 154/773 - loss 0.05242848 - time (sec): 9.25 - samples/sec: 2794.38 - lr: 0.000043 - momentum: 0.000000
|
108 |
+
2023-10-17 00:12:36,075 epoch 3 - iter 231/773 - loss 0.05020704 - time (sec): 13.99 - samples/sec: 2799.71 - lr: 0.000043 - momentum: 0.000000
|
109 |
+
2023-10-17 00:12:40,485 epoch 3 - iter 308/773 - loss 0.04913742 - time (sec): 18.40 - samples/sec: 2761.24 - lr: 0.000042 - momentum: 0.000000
|
110 |
+
2023-10-17 00:12:45,283 epoch 3 - iter 385/773 - loss 0.04825767 - time (sec): 23.20 - samples/sec: 2709.09 - lr: 0.000042 - momentum: 0.000000
|
111 |
+
2023-10-17 00:12:49,681 epoch 3 - iter 462/773 - loss 0.04909420 - time (sec): 27.60 - samples/sec: 2706.36 - lr: 0.000041 - momentum: 0.000000
|
112 |
+
2023-10-17 00:12:54,373 epoch 3 - iter 539/773 - loss 0.05056346 - time (sec): 32.29 - samples/sec: 2716.55 - lr: 0.000041 - momentum: 0.000000
|
113 |
+
2023-10-17 00:12:58,913 epoch 3 - iter 616/773 - loss 0.04920383 - time (sec): 36.83 - samples/sec: 2711.79 - lr: 0.000040 - momentum: 0.000000
|
114 |
+
2023-10-17 00:13:03,233 epoch 3 - iter 693/773 - loss 0.04950107 - time (sec): 41.15 - samples/sec: 2708.02 - lr: 0.000039 - momentum: 0.000000
|
115 |
+
2023-10-17 00:13:07,711 epoch 3 - iter 770/773 - loss 0.04922958 - time (sec): 45.63 - samples/sec: 2714.93 - lr: 0.000039 - momentum: 0.000000
|
116 |
+
2023-10-17 00:13:07,859 ----------------------------------------------------------------------------------------------------
|
117 |
+
2023-10-17 00:13:07,859 EPOCH 3 done: loss 0.0491 - lr: 0.000039
|
118 |
+
2023-10-17 00:13:09,920 DEV : loss 0.07400500774383545 - f1-score (micro avg) 0.7557
|
119 |
+
2023-10-17 00:13:09,933 ----------------------------------------------------------------------------------------------------
|
120 |
+
2023-10-17 00:13:14,277 epoch 4 - iter 77/773 - loss 0.03358044 - time (sec): 4.34 - samples/sec: 2682.63 - lr: 0.000038 - momentum: 0.000000
|
121 |
+
2023-10-17 00:13:18,839 epoch 4 - iter 154/773 - loss 0.03101342 - time (sec): 8.91 - samples/sec: 2657.51 - lr: 0.000038 - momentum: 0.000000
|
122 |
+
2023-10-17 00:13:23,406 epoch 4 - iter 231/773 - loss 0.04019504 - time (sec): 13.47 - samples/sec: 2696.83 - lr: 0.000037 - momentum: 0.000000
|
123 |
+
2023-10-17 00:13:27,935 epoch 4 - iter 308/773 - loss 0.03771869 - time (sec): 18.00 - samples/sec: 2698.58 - lr: 0.000037 - momentum: 0.000000
|
124 |
+
2023-10-17 00:13:32,515 epoch 4 - iter 385/773 - loss 0.03809639 - time (sec): 22.58 - samples/sec: 2693.07 - lr: 0.000036 - momentum: 0.000000
|
125 |
+
2023-10-17 00:13:36,925 epoch 4 - iter 462/773 - loss 0.03778033 - time (sec): 26.99 - samples/sec: 2697.29 - lr: 0.000036 - momentum: 0.000000
|
126 |
+
2023-10-17 00:13:41,472 epoch 4 - iter 539/773 - loss 0.03704712 - time (sec): 31.54 - samples/sec: 2709.38 - lr: 0.000035 - momentum: 0.000000
|
127 |
+
2023-10-17 00:13:45,999 epoch 4 - iter 616/773 - loss 0.03811842 - time (sec): 36.07 - samples/sec: 2708.41 - lr: 0.000034 - momentum: 0.000000
|
128 |
+
2023-10-17 00:13:50,448 epoch 4 - iter 693/773 - loss 0.03785183 - time (sec): 40.51 - samples/sec: 2725.89 - lr: 0.000034 - momentum: 0.000000
|
129 |
+
2023-10-17 00:13:55,203 epoch 4 - iter 770/773 - loss 0.03661737 - time (sec): 45.27 - samples/sec: 2732.01 - lr: 0.000033 - momentum: 0.000000
|
130 |
+
2023-10-17 00:13:55,384 ----------------------------------------------------------------------------------------------------
|
131 |
+
2023-10-17 00:13:55,384 EPOCH 4 done: loss 0.0369 - lr: 0.000033
|
132 |
+
2023-10-17 00:13:57,425 DEV : loss 0.094989113509655 - f1-score (micro avg) 0.7735
|
133 |
+
2023-10-17 00:13:57,438 saving best model
|
134 |
+
2023-10-17 00:13:57,905 ----------------------------------------------------------------------------------------------------
|
135 |
+
2023-10-17 00:14:02,360 epoch 5 - iter 77/773 - loss 0.03472163 - time (sec): 4.45 - samples/sec: 2784.21 - lr: 0.000033 - momentum: 0.000000
|
136 |
+
2023-10-17 00:14:06,806 epoch 5 - iter 154/773 - loss 0.03021440 - time (sec): 8.89 - samples/sec: 2742.09 - lr: 0.000032 - momentum: 0.000000
|
137 |
+
2023-10-17 00:14:11,196 epoch 5 - iter 231/773 - loss 0.02772660 - time (sec): 13.28 - samples/sec: 2772.06 - lr: 0.000032 - momentum: 0.000000
|
138 |
+
2023-10-17 00:14:15,511 epoch 5 - iter 308/773 - loss 0.02631770 - time (sec): 17.60 - samples/sec: 2794.08 - lr: 0.000031 - momentum: 0.000000
|
139 |
+
2023-10-17 00:14:20,117 epoch 5 - iter 385/773 - loss 0.02565861 - time (sec): 22.20 - samples/sec: 2794.33 - lr: 0.000031 - momentum: 0.000000
|
140 |
+
2023-10-17 00:14:24,603 epoch 5 - iter 462/773 - loss 0.02740935 - time (sec): 26.69 - samples/sec: 2773.42 - lr: 0.000030 - momentum: 0.000000
|
141 |
+
2023-10-17 00:14:29,099 epoch 5 - iter 539/773 - loss 0.02750473 - time (sec): 31.19 - samples/sec: 2807.62 - lr: 0.000029 - momentum: 0.000000
|
142 |
+
2023-10-17 00:14:33,457 epoch 5 - iter 616/773 - loss 0.02705987 - time (sec): 35.54 - samples/sec: 2797.03 - lr: 0.000029 - momentum: 0.000000
|
143 |
+
2023-10-17 00:14:37,868 epoch 5 - iter 693/773 - loss 0.02728248 - time (sec): 39.96 - samples/sec: 2796.81 - lr: 0.000028 - momentum: 0.000000
|
144 |
+
2023-10-17 00:14:42,389 epoch 5 - iter 770/773 - loss 0.02673116 - time (sec): 44.48 - samples/sec: 2787.57 - lr: 0.000028 - momentum: 0.000000
|
145 |
+
2023-10-17 00:14:42,531 ----------------------------------------------------------------------------------------------------
|
146 |
+
2023-10-17 00:14:42,532 EPOCH 5 done: loss 0.0267 - lr: 0.000028
|
147 |
+
2023-10-17 00:14:44,574 DEV : loss 0.08982112258672714 - f1-score (micro avg) 0.7782
|
148 |
+
2023-10-17 00:14:44,587 saving best model
|
149 |
+
2023-10-17 00:14:45,034 ----------------------------------------------------------------------------------------------------
|
150 |
+
2023-10-17 00:14:49,458 epoch 6 - iter 77/773 - loss 0.01860363 - time (sec): 4.42 - samples/sec: 2848.08 - lr: 0.000027 - momentum: 0.000000
|
151 |
+
2023-10-17 00:14:54,100 epoch 6 - iter 154/773 - loss 0.02010732 - time (sec): 9.06 - samples/sec: 2800.03 - lr: 0.000027 - momentum: 0.000000
|
152 |
+
2023-10-17 00:14:58,610 epoch 6 - iter 231/773 - loss 0.02089781 - time (sec): 13.57 - samples/sec: 2737.15 - lr: 0.000026 - momentum: 0.000000
|
153 |
+
2023-10-17 00:15:02,982 epoch 6 - iter 308/773 - loss 0.02145581 - time (sec): 17.95 - samples/sec: 2766.88 - lr: 0.000026 - momentum: 0.000000
|
154 |
+
2023-10-17 00:15:07,619 epoch 6 - iter 385/773 - loss 0.02124064 - time (sec): 22.58 - samples/sec: 2763.84 - lr: 0.000025 - momentum: 0.000000
|
155 |
+
2023-10-17 00:15:12,187 epoch 6 - iter 462/773 - loss 0.02044592 - time (sec): 27.15 - samples/sec: 2735.29 - lr: 0.000024 - momentum: 0.000000
|
156 |
+
2023-10-17 00:15:16,805 epoch 6 - iter 539/773 - loss 0.01854573 - time (sec): 31.77 - samples/sec: 2735.71 - lr: 0.000024 - momentum: 0.000000
|
157 |
+
2023-10-17 00:15:21,104 epoch 6 - iter 616/773 - loss 0.01837402 - time (sec): 36.07 - samples/sec: 2709.40 - lr: 0.000023 - momentum: 0.000000
|
158 |
+
2023-10-17 00:15:25,786 epoch 6 - iter 693/773 - loss 0.01805303 - time (sec): 40.75 - samples/sec: 2715.50 - lr: 0.000023 - momentum: 0.000000
|
159 |
+
2023-10-17 00:15:30,367 epoch 6 - iter 770/773 - loss 0.01812580 - time (sec): 45.33 - samples/sec: 2734.73 - lr: 0.000022 - momentum: 0.000000
|
160 |
+
2023-10-17 00:15:30,515 ----------------------------------------------------------------------------------------------------
|
161 |
+
2023-10-17 00:15:30,515 EPOCH 6 done: loss 0.0182 - lr: 0.000022
|
162 |
+
2023-10-17 00:15:32,896 DEV : loss 0.10503190755844116 - f1-score (micro avg) 0.7828
|
163 |
+
2023-10-17 00:15:32,909 saving best model
|
164 |
+
2023-10-17 00:15:33,359 ----------------------------------------------------------------------------------------------------
|
165 |
+
2023-10-17 00:15:37,736 epoch 7 - iter 77/773 - loss 0.01183332 - time (sec): 4.38 - samples/sec: 2641.89 - lr: 0.000022 - momentum: 0.000000
|
166 |
+
2023-10-17 00:15:42,135 epoch 7 - iter 154/773 - loss 0.01209373 - time (sec): 8.78 - samples/sec: 2648.17 - lr: 0.000021 - momentum: 0.000000
|
167 |
+
2023-10-17 00:15:46,560 epoch 7 - iter 231/773 - loss 0.01195452 - time (sec): 13.20 - samples/sec: 2661.44 - lr: 0.000021 - momentum: 0.000000
|
168 |
+
2023-10-17 00:15:51,297 epoch 7 - iter 308/773 - loss 0.01287340 - time (sec): 17.94 - samples/sec: 2678.24 - lr: 0.000020 - momentum: 0.000000
|
169 |
+
2023-10-17 00:15:56,031 epoch 7 - iter 385/773 - loss 0.01293459 - time (sec): 22.67 - samples/sec: 2684.40 - lr: 0.000019 - momentum: 0.000000
|
170 |
+
2023-10-17 00:16:00,860 epoch 7 - iter 462/773 - loss 0.01236694 - time (sec): 27.50 - samples/sec: 2680.71 - lr: 0.000019 - momentum: 0.000000
|
171 |
+
2023-10-17 00:16:05,350 epoch 7 - iter 539/773 - loss 0.01324423 - time (sec): 31.99 - samples/sec: 2716.70 - lr: 0.000018 - momentum: 0.000000
|
172 |
+
2023-10-17 00:16:09,729 epoch 7 - iter 616/773 - loss 0.01303248 - time (sec): 36.37 - samples/sec: 2732.97 - lr: 0.000018 - momentum: 0.000000
|
173 |
+
2023-10-17 00:16:14,130 epoch 7 - iter 693/773 - loss 0.01280785 - time (sec): 40.77 - samples/sec: 2728.98 - lr: 0.000017 - momentum: 0.000000
|
174 |
+
2023-10-17 00:16:18,632 epoch 7 - iter 770/773 - loss 0.01284700 - time (sec): 45.27 - samples/sec: 2736.07 - lr: 0.000017 - momentum: 0.000000
|
175 |
+
2023-10-17 00:16:18,807 ----------------------------------------------------------------------------------------------------
|
176 |
+
2023-10-17 00:16:18,807 EPOCH 7 done: loss 0.0129 - lr: 0.000017
|
177 |
+
2023-10-17 00:16:20,898 DEV : loss 0.11371700465679169 - f1-score (micro avg) 0.7819
|
178 |
+
2023-10-17 00:16:20,911 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-10-17 00:16:25,476 epoch 8 - iter 77/773 - loss 0.01156935 - time (sec): 4.56 - samples/sec: 2709.97 - lr: 0.000016 - momentum: 0.000000
|
180 |
+
2023-10-17 00:16:30,132 epoch 8 - iter 154/773 - loss 0.01249568 - time (sec): 9.22 - samples/sec: 2800.97 - lr: 0.000016 - momentum: 0.000000
|
181 |
+
2023-10-17 00:16:34,605 epoch 8 - iter 231/773 - loss 0.01229927 - time (sec): 13.69 - samples/sec: 2766.08 - lr: 0.000015 - momentum: 0.000000
|
182 |
+
2023-10-17 00:16:39,121 epoch 8 - iter 308/773 - loss 0.01066091 - time (sec): 18.21 - samples/sec: 2785.15 - lr: 0.000014 - momentum: 0.000000
|
183 |
+
2023-10-17 00:16:43,831 epoch 8 - iter 385/773 - loss 0.00972507 - time (sec): 22.92 - samples/sec: 2770.43 - lr: 0.000014 - momentum: 0.000000
|
184 |
+
2023-10-17 00:16:48,553 epoch 8 - iter 462/773 - loss 0.00980739 - time (sec): 27.64 - samples/sec: 2766.62 - lr: 0.000013 - momentum: 0.000000
|
185 |
+
2023-10-17 00:16:53,046 epoch 8 - iter 539/773 - loss 0.01020468 - time (sec): 32.13 - samples/sec: 2739.83 - lr: 0.000013 - momentum: 0.000000
|
186 |
+
2023-10-17 00:16:57,396 epoch 8 - iter 616/773 - loss 0.01063618 - time (sec): 36.48 - samples/sec: 2725.94 - lr: 0.000012 - momentum: 0.000000
|
187 |
+
2023-10-17 00:17:01,933 epoch 8 - iter 693/773 - loss 0.01072864 - time (sec): 41.02 - samples/sec: 2734.32 - lr: 0.000012 - momentum: 0.000000
|
188 |
+
2023-10-17 00:17:06,292 epoch 8 - iter 770/773 - loss 0.01043384 - time (sec): 45.38 - samples/sec: 2729.16 - lr: 0.000011 - momentum: 0.000000
|
189 |
+
2023-10-17 00:17:06,450 ----------------------------------------------------------------------------------------------------
|
190 |
+
2023-10-17 00:17:06,450 EPOCH 8 done: loss 0.0104 - lr: 0.000011
|
191 |
+
2023-10-17 00:17:08,525 DEV : loss 0.11392305791378021 - f1-score (micro avg) 0.7769
|
192 |
+
2023-10-17 00:17:08,537 ----------------------------------------------------------------------------------------------------
|
193 |
+
2023-10-17 00:17:12,969 epoch 9 - iter 77/773 - loss 0.00904434 - time (sec): 4.43 - samples/sec: 2761.63 - lr: 0.000011 - momentum: 0.000000
|
194 |
+
2023-10-17 00:17:17,472 epoch 9 - iter 154/773 - loss 0.00780158 - time (sec): 8.93 - samples/sec: 2828.74 - lr: 0.000010 - momentum: 0.000000
|
195 |
+
2023-10-17 00:17:22,301 epoch 9 - iter 231/773 - loss 0.00701070 - time (sec): 13.76 - samples/sec: 2789.60 - lr: 0.000009 - momentum: 0.000000
|
196 |
+
2023-10-17 00:17:26,710 epoch 9 - iter 308/773 - loss 0.00763945 - time (sec): 18.17 - samples/sec: 2774.88 - lr: 0.000009 - momentum: 0.000000
|
197 |
+
2023-10-17 00:17:31,242 epoch 9 - iter 385/773 - loss 0.00690755 - time (sec): 22.70 - samples/sec: 2761.91 - lr: 0.000008 - momentum: 0.000000
|
198 |
+
2023-10-17 00:17:35,850 epoch 9 - iter 462/773 - loss 0.00645291 - time (sec): 27.31 - samples/sec: 2743.64 - lr: 0.000008 - momentum: 0.000000
|
199 |
+
2023-10-17 00:17:40,446 epoch 9 - iter 539/773 - loss 0.00573275 - time (sec): 31.91 - samples/sec: 2708.02 - lr: 0.000007 - momentum: 0.000000
|
200 |
+
2023-10-17 00:17:44,926 epoch 9 - iter 616/773 - loss 0.00611407 - time (sec): 36.39 - samples/sec: 2725.77 - lr: 0.000007 - momentum: 0.000000
|
201 |
+
2023-10-17 00:17:49,539 epoch 9 - iter 693/773 - loss 0.00629245 - time (sec): 41.00 - samples/sec: 2723.65 - lr: 0.000006 - momentum: 0.000000
|
202 |
+
2023-10-17 00:17:53,916 epoch 9 - iter 770/773 - loss 0.00650414 - time (sec): 45.38 - samples/sec: 2726.62 - lr: 0.000006 - momentum: 0.000000
|
203 |
+
2023-10-17 00:17:54,091 ----------------------------------------------------------------------------------------------------
|
204 |
+
2023-10-17 00:17:54,091 EPOCH 9 done: loss 0.0065 - lr: 0.000006
|
205 |
+
2023-10-17 00:17:56,158 DEV : loss 0.12053602188825607 - f1-score (micro avg) 0.7826
|
206 |
+
2023-10-17 00:17:56,171 ----------------------------------------------------------------------------------------------------
|
207 |
+
2023-10-17 00:18:00,927 epoch 10 - iter 77/773 - loss 0.00599831 - time (sec): 4.75 - samples/sec: 2645.45 - lr: 0.000005 - momentum: 0.000000
|
208 |
+
2023-10-17 00:18:05,488 epoch 10 - iter 154/773 - loss 0.00506362 - time (sec): 9.32 - samples/sec: 2681.78 - lr: 0.000005 - momentum: 0.000000
|
209 |
+
2023-10-17 00:18:09,735 epoch 10 - iter 231/773 - loss 0.00564116 - time (sec): 13.56 - samples/sec: 2681.17 - lr: 0.000004 - momentum: 0.000000
|
210 |
+
2023-10-17 00:18:14,369 epoch 10 - iter 308/773 - loss 0.00511353 - time (sec): 18.20 - samples/sec: 2704.55 - lr: 0.000003 - momentum: 0.000000
|
211 |
+
2023-10-17 00:18:18,980 epoch 10 - iter 385/773 - loss 0.00477008 - time (sec): 22.81 - samples/sec: 2745.02 - lr: 0.000003 - momentum: 0.000000
|
212 |
+
2023-10-17 00:18:23,547 epoch 10 - iter 462/773 - loss 0.00429130 - time (sec): 27.38 - samples/sec: 2766.04 - lr: 0.000002 - momentum: 0.000000
|
213 |
+
2023-10-17 00:18:28,025 epoch 10 - iter 539/773 - loss 0.00437021 - time (sec): 31.85 - samples/sec: 2763.06 - lr: 0.000002 - momentum: 0.000000
|
214 |
+
2023-10-17 00:18:32,366 epoch 10 - iter 616/773 - loss 0.00440371 - time (sec): 36.19 - samples/sec: 2751.71 - lr: 0.000001 - momentum: 0.000000
|
215 |
+
2023-10-17 00:18:36,768 epoch 10 - iter 693/773 - loss 0.00478785 - time (sec): 40.60 - samples/sec: 2756.28 - lr: 0.000001 - momentum: 0.000000
|
216 |
+
2023-10-17 00:18:41,261 epoch 10 - iter 770/773 - loss 0.00462015 - time (sec): 45.09 - samples/sec: 2746.82 - lr: 0.000000 - momentum: 0.000000
|
217 |
+
2023-10-17 00:18:41,417 ----------------------------------------------------------------------------------------------------
|
218 |
+
2023-10-17 00:18:41,417 EPOCH 10 done: loss 0.0046 - lr: 0.000000
|
219 |
+
2023-10-17 00:18:43,468 DEV : loss 0.11875911056995392 - f1-score (micro avg) 0.7789
|
220 |
+
2023-10-17 00:18:43,819 ----------------------------------------------------------------------------------------------------
|
221 |
+
2023-10-17 00:18:43,821 Loading model from best epoch ...
|
222 |
+
2023-10-17 00:18:45,650 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-BUILDING, B-BUILDING, E-BUILDING, I-BUILDING, S-STREET, B-STREET, E-STREET, I-STREET
|
223 |
+
2023-10-17 00:18:51,351
|
224 |
+
Results:
|
225 |
+
- F-score (micro) 0.8017
|
226 |
+
- F-score (macro) 0.7056
|
227 |
+
- Accuracy 0.6963
|
228 |
+
|
229 |
+
By class:
|
230 |
+
precision recall f1-score support
|
231 |
+
|
232 |
+
LOC 0.8471 0.8436 0.8453 946
|
233 |
+
BUILDING 0.6049 0.6703 0.6359 185
|
234 |
+
STREET 0.6667 0.6071 0.6355 56
|
235 |
+
|
236 |
+
micro avg 0.7980 0.8054 0.8017 1187
|
237 |
+
macro avg 0.7062 0.7070 0.7056 1187
|
238 |
+
weighted avg 0.8009 0.8054 0.8028 1187
|
239 |
+
|
240 |
+
2023-10-17 00:18:51,351 ----------------------------------------------------------------------------------------------------
|