File size: 6,729 Bytes
ee66a83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
from copy import deepcopy
import mmengine
from mmengine.config import Config, ConfigDict, DictAction
from mmengine.evaluator import DumpResults
from mmengine.runner import Runner
def parse_args():
parser = argparse.ArgumentParser(
description='MMPreTrain test (and eval) a model')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument(
'--work-dir',
help='the directory to save the file containing evaluation metrics')
parser.add_argument('--out', help='the file to output results.')
parser.add_argument(
'--out-item',
choices=['metrics', 'pred'],
help='To output whether metrics or predictions. '
'Defaults to output predictions.')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--amp',
action='store_true',
help='enable automatic-mixed-precision test')
parser.add_argument(
'--show-dir',
help='directory where the visualization images will be saved.')
parser.add_argument(
'--show',
action='store_true',
help='whether to display the prediction results in a window.')
parser.add_argument(
'--interval',
type=int,
default=1,
help='visualize per interval samples.')
parser.add_argument(
'--wait-time',
type=float,
default=2,
help='display time of every window. (second)')
parser.add_argument(
'--no-pin-memory',
action='store_true',
help='whether to disable the pin_memory option in dataloaders.')
parser.add_argument(
'--tta',
action='store_true',
help='Whether to enable the Test-Time-Aug (TTA). If the config file '
'has `tta_pipeline` and `tta_model` fields, use them to determine the '
'TTA transforms and how to merge the TTA results. Otherwise, use flip '
'TTA by averaging classification score.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
# When using PyTorch version >= 2.0.0, the `torch.distributed.launch`
# will pass the `--local-rank` parameter to `tools/train.py` instead
# of `--local_rank`.
parser.add_argument('--local_rank', '--local-rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def merge_args(cfg, args):
"""Merge CLI arguments to config."""
cfg.launcher = args.launcher
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
cfg.work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.config))[0])
cfg.load_from = args.checkpoint
# enable automatic-mixed-precision test
if args.amp:
cfg.test_cfg.fp16 = True
# -------------------- visualization --------------------
if args.show or (args.show_dir is not None):
assert 'visualization' in cfg.default_hooks, \
'VisualizationHook is not set in the `default_hooks` field of ' \
'config. Please set `visualization=dict(type="VisualizationHook")`'
cfg.default_hooks.visualization.enable = True
cfg.default_hooks.visualization.show = args.show
cfg.default_hooks.visualization.wait_time = args.wait_time
cfg.default_hooks.visualization.out_dir = args.show_dir
cfg.default_hooks.visualization.interval = args.interval
# -------------------- TTA related args --------------------
if args.tta:
if 'tta_model' not in cfg:
cfg.tta_model = dict(type='mmpretrain.AverageClsScoreTTA')
if 'tta_pipeline' not in cfg:
test_pipeline = cfg.test_dataloader.dataset.pipeline
cfg.tta_pipeline = deepcopy(test_pipeline)
flip_tta = dict(
type='TestTimeAug',
transforms=[
[
dict(type='RandomFlip', prob=1.),
dict(type='RandomFlip', prob=0.)
],
[test_pipeline[-1]],
])
cfg.tta_pipeline[-1] = flip_tta
cfg.model = ConfigDict(**cfg.tta_model, module=cfg.model)
cfg.test_dataloader.dataset.pipeline = cfg.tta_pipeline
# ----------------- Default dataloader args -----------------
default_dataloader_cfg = ConfigDict(
pin_memory=True,
collate_fn=dict(type='default_collate'),
)
def set_default_dataloader_cfg(cfg, field):
if cfg.get(field, None) is None:
return
dataloader_cfg = deepcopy(default_dataloader_cfg)
dataloader_cfg.update(cfg[field])
cfg[field] = dataloader_cfg
if args.no_pin_memory:
cfg[field]['pin_memory'] = False
set_default_dataloader_cfg(cfg, 'test_dataloader')
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
return cfg
def main():
args = parse_args()
if args.out is None and args.out_item is not None:
raise ValueError('Please use `--out` argument to specify the '
'path of the output file before using `--out-item`.')
# load config
cfg = Config.fromfile(args.config)
# merge cli arguments to config
cfg = merge_args(cfg, args)
# build the runner from config
runner = Runner.from_cfg(cfg)
if args.out and args.out_item in ['pred', None]:
runner.test_evaluator.metrics.append(
DumpResults(out_file_path=args.out))
# start testing
metrics = runner.test()
if args.out and args.out_item == 'metrics':
mmengine.dump(metrics, args.out)
if __name__ == '__main__':
main()
|