File size: 1,562 Bytes
7318fe0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# Copyright (c) OpenMMLab. All rights reserved.
from ..builder import CLASSIFIERS
from ..heads import MultiLabelClsHead
from .image import ImageClassifier


@CLASSIFIERS.register_module()
class MetadataClassifier(ImageClassifier):

    def forward_train(self, img, gt_label, img_metas, **kwargs):
        """Forward computation during training.

        Args:
            img (Tensor): of shape (N, C, H, W) encoding input images.
                Typically these should be mean centered and std scaled.
            gt_label (Tensor): It should be of shape (N, 1) encoding the
                ground-truth label of input images for single label task. It
                shoulf be of shape (N, C) encoding the ground-truth label
                of input images for multi-labels task.
        Returns:
            dict[str, Tensor]: a dictionary of loss components
        """
        if self.augments is not None:
            img, gt_label = self.augments(img, gt_label)

        x = self.extract_feat(img)

        losses = dict()
        loss = self.head.forward_train(x, gt_label, img_metas)

        losses.update(loss)

        return losses

    def simple_test(self, img, img_metas=None, **kwargs):
        """Test without augmentation."""
        x = self.extract_feat(img)

        if isinstance(self.head, MultiLabelClsHead):
            assert 'softmax' not in kwargs, (
                'Please use `sigmoid` instead of `softmax` '
                'in multi-label tasks.')
        res = self.head.simple_test(x, img_metas, **kwargs)

        return res