Stefan Wolf
commited on
Commit
·
22da683
1
Parent(s):
5d666d5
Updated exported models.
Browse files- models/swin_base_b32x4-fp16_fungi+val_res_384_cb_epochs_6.py +0 -283
- models/swin_base_b32x4-fp16_fungi+val_res_384_cb_epochs_6_20230524-5197a7e6.pth +0 -3
- models/swin_large_b12x6-fp16_fungi+val_res_384_cb_epochs_6.py +0 -283
- models/swin_large_b12x6-fp16_fungi+val_res_384_cb_epochs_6_20230524-9582690d.pth +0 -3
- models/swin_large_b12x6-fp16_fungi+val_res_384_cb_epochs_6_no-margin.py +0 -283
- models/{swinv2_base_w24_b32x4-fp16_fungi+val_res_384_cb_epochs_6.py → swinv2_base_w24_b16x4-fp16_fungi+val_res_384_cb_epochs_6.py} +293 -211
- models/{swin_base_b16x4-fp16_fungi_res_384_cb_epochs_6_20230524-8b2afc73.pth → swinv2_base_w24_b16x4-fp16_fungi+val_res_384_cb_epochs_6_epoch_6_20240514-de00365e.pth} +2 -2
- models/swinv2_base_w24_b32x4-fp16_fungi+val_res_384_cb_epochs_6_20230524-a251a50a.pth +0 -3
- models/swinv2_base_w24_b32x4-fp16_fungi+val_res_384_cb_epochs_9_20230525-88a0bc68.pth +0 -3
models/swin_base_b32x4-fp16_fungi+val_res_384_cb_epochs_6.py
DELETED
@@ -1,283 +0,0 @@
|
|
1 |
-
model = dict(
|
2 |
-
type='ImageClassifier',
|
3 |
-
backbone=dict(
|
4 |
-
type='SwinTransformer',
|
5 |
-
arch='base',
|
6 |
-
img_size=384,
|
7 |
-
stage_cfgs=dict(block_cfgs=dict(window_size=12)),
|
8 |
-
drop_path_rate=0.5,
|
9 |
-
init_cfg=dict(
|
10 |
-
type='Pretrained',
|
11 |
-
checkpoint=
|
12 |
-
'https://download.openmmlab.com/mmclassification/v0/swin-transformer/convert/swin-base_3rdparty_in21k-384px.pth',
|
13 |
-
prefix='backbone')),
|
14 |
-
neck=dict(type='GlobalAveragePooling'),
|
15 |
-
head=dict(
|
16 |
-
type='LinearClsHead',
|
17 |
-
num_classes=1604,
|
18 |
-
in_channels=1024,
|
19 |
-
init_cfg=None,
|
20 |
-
loss=dict(
|
21 |
-
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
|
22 |
-
cal_acc=False),
|
23 |
-
init_cfg=[
|
24 |
-
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.0),
|
25 |
-
dict(type='Constant', layer='LayerNorm', val=1.0, bias=0.0)
|
26 |
-
],
|
27 |
-
train_cfg=dict())
|
28 |
-
rand_increasing_policies = [
|
29 |
-
dict(type='AutoContrast'),
|
30 |
-
dict(type='Equalize'),
|
31 |
-
dict(type='Invert'),
|
32 |
-
dict(type='Rotate', magnitude_key='angle', magnitude_range=(0, 30)),
|
33 |
-
dict(type='Posterize', magnitude_key='bits', magnitude_range=(4, 0)),
|
34 |
-
dict(type='Solarize', magnitude_key='thr', magnitude_range=(256, 0)),
|
35 |
-
dict(
|
36 |
-
type='SolarizeAdd',
|
37 |
-
magnitude_key='magnitude',
|
38 |
-
magnitude_range=(0, 110)),
|
39 |
-
dict(
|
40 |
-
type='ColorTransform',
|
41 |
-
magnitude_key='magnitude',
|
42 |
-
magnitude_range=(0, 0.9)),
|
43 |
-
dict(type='Contrast', magnitude_key='magnitude', magnitude_range=(0, 0.9)),
|
44 |
-
dict(
|
45 |
-
type='Brightness', magnitude_key='magnitude',
|
46 |
-
magnitude_range=(0, 0.9)),
|
47 |
-
dict(
|
48 |
-
type='Sharpness', magnitude_key='magnitude', magnitude_range=(0, 0.9)),
|
49 |
-
dict(
|
50 |
-
type='Shear',
|
51 |
-
magnitude_key='magnitude',
|
52 |
-
magnitude_range=(0, 0.3),
|
53 |
-
direction='horizontal'),
|
54 |
-
dict(
|
55 |
-
type='Shear',
|
56 |
-
magnitude_key='magnitude',
|
57 |
-
magnitude_range=(0, 0.3),
|
58 |
-
direction='vertical'),
|
59 |
-
dict(
|
60 |
-
type='Translate',
|
61 |
-
magnitude_key='magnitude',
|
62 |
-
magnitude_range=(0, 0.45),
|
63 |
-
direction='horizontal'),
|
64 |
-
dict(
|
65 |
-
type='Translate',
|
66 |
-
magnitude_key='magnitude',
|
67 |
-
magnitude_range=(0, 0.45),
|
68 |
-
direction='vertical')
|
69 |
-
]
|
70 |
-
dataset_type = 'Fungi'
|
71 |
-
data_preprocessor = dict(
|
72 |
-
num_classes=1604,
|
73 |
-
mean=[123.675, 116.28, 103.53],
|
74 |
-
std=[58.395, 57.12, 57.375],
|
75 |
-
to_rgb=True)
|
76 |
-
bgr_mean = [103.53, 116.28, 123.675]
|
77 |
-
bgr_std = [57.375, 57.12, 58.395]
|
78 |
-
train_pipeline = [
|
79 |
-
dict(type='LoadImageFromFileFungi'),
|
80 |
-
dict(
|
81 |
-
type='RandomResizedCrop',
|
82 |
-
scale=384,
|
83 |
-
backend='pillow',
|
84 |
-
interpolation='bicubic'),
|
85 |
-
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
86 |
-
dict(
|
87 |
-
type='RandAugment',
|
88 |
-
policies='timm_increasing',
|
89 |
-
num_policies=2,
|
90 |
-
total_level=10,
|
91 |
-
magnitude_level=9,
|
92 |
-
magnitude_std=0.5,
|
93 |
-
hparams=dict(pad_val=[104, 116, 124], interpolation='bicubic')),
|
94 |
-
dict(
|
95 |
-
type='RandomErasing',
|
96 |
-
erase_prob=0.25,
|
97 |
-
mode='rand',
|
98 |
-
min_area_ratio=0.02,
|
99 |
-
max_area_ratio=0.3333333333333333,
|
100 |
-
fill_color=[103.53, 116.28, 123.675],
|
101 |
-
fill_std=[57.375, 57.12, 58.395]),
|
102 |
-
dict(type='PackInputs')
|
103 |
-
]
|
104 |
-
test_pipeline = [
|
105 |
-
dict(type='LoadImageFromFileFungi'),
|
106 |
-
dict(
|
107 |
-
type='ResizeEdge',
|
108 |
-
scale=438,
|
109 |
-
edge='short',
|
110 |
-
backend='pillow',
|
111 |
-
interpolation='bicubic'),
|
112 |
-
dict(type='CenterCrop', crop_size=384),
|
113 |
-
dict(type='PackInputs')
|
114 |
-
]
|
115 |
-
train_dataloader = dict(
|
116 |
-
pin_memory=True,
|
117 |
-
persistent_workers=True,
|
118 |
-
collate_fn=dict(type='default_collate'),
|
119 |
-
batch_size=32,
|
120 |
-
num_workers=14,
|
121 |
-
dataset=dict(
|
122 |
-
type='ClassBalancedDataset',
|
123 |
-
oversample_thr=0.01,
|
124 |
-
dataset=dict(
|
125 |
-
type='Fungi',
|
126 |
-
data_root='/scratch/slurm_tmpdir/job_22252118/',
|
127 |
-
ann_file='FungiCLEF2023_train_metadata_PRODUCTION.csv',
|
128 |
-
data_prefix='DF20/',
|
129 |
-
pipeline=[
|
130 |
-
dict(type='LoadImageFromFileFungi'),
|
131 |
-
dict(
|
132 |
-
type='RandomResizedCrop',
|
133 |
-
scale=384,
|
134 |
-
backend='pillow',
|
135 |
-
interpolation='bicubic'),
|
136 |
-
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
137 |
-
dict(
|
138 |
-
type='RandAugment',
|
139 |
-
policies='timm_increasing',
|
140 |
-
num_policies=2,
|
141 |
-
total_level=10,
|
142 |
-
magnitude_level=9,
|
143 |
-
magnitude_std=0.5,
|
144 |
-
hparams=dict(
|
145 |
-
pad_val=[104, 116, 124], interpolation='bicubic')),
|
146 |
-
dict(
|
147 |
-
type='RandomErasing',
|
148 |
-
erase_prob=0.25,
|
149 |
-
mode='rand',
|
150 |
-
min_area_ratio=0.02,
|
151 |
-
max_area_ratio=0.3333333333333333,
|
152 |
-
fill_color=[103.53, 116.28, 123.675],
|
153 |
-
fill_std=[57.375, 57.12, 58.395]),
|
154 |
-
dict(type='PackInputs')
|
155 |
-
])),
|
156 |
-
sampler=dict(type='DefaultSampler', shuffle=True))
|
157 |
-
val_dataloader = dict(
|
158 |
-
pin_memory=True,
|
159 |
-
persistent_workers=True,
|
160 |
-
collate_fn=dict(type='default_collate'),
|
161 |
-
batch_size=64,
|
162 |
-
num_workers=12,
|
163 |
-
dataset=dict(
|
164 |
-
type='Fungi',
|
165 |
-
data_root='/scratch/slurm_tmpdir/job_22252118/',
|
166 |
-
ann_file='FungiCLEF2023_val_metadata_PRODUCTION.csv',
|
167 |
-
data_prefix='DF21/',
|
168 |
-
pipeline=[
|
169 |
-
dict(type='LoadImageFromFileFungi'),
|
170 |
-
dict(
|
171 |
-
type='RandomResizedCrop',
|
172 |
-
scale=384,
|
173 |
-
backend='pillow',
|
174 |
-
interpolation='bicubic'),
|
175 |
-
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
176 |
-
dict(
|
177 |
-
type='RandAugment',
|
178 |
-
policies='timm_increasing',
|
179 |
-
num_policies=2,
|
180 |
-
total_level=10,
|
181 |
-
magnitude_level=9,
|
182 |
-
magnitude_std=0.5,
|
183 |
-
hparams=dict(pad_val=[104, 116, 124],
|
184 |
-
interpolation='bicubic')),
|
185 |
-
dict(
|
186 |
-
type='RandomErasing',
|
187 |
-
erase_prob=0.25,
|
188 |
-
mode='rand',
|
189 |
-
min_area_ratio=0.02,
|
190 |
-
max_area_ratio=0.3333333333333333,
|
191 |
-
fill_color=[103.53, 116.28, 123.675],
|
192 |
-
fill_std=[57.375, 57.12, 58.395]),
|
193 |
-
dict(type='PackInputs')
|
194 |
-
]),
|
195 |
-
sampler=dict(type='DefaultSampler', shuffle=False))
|
196 |
-
val_evaluator = dict(
|
197 |
-
type='SingleLabelMetric', items=['precision', 'recall', 'f1-score'])
|
198 |
-
test_dataloader = dict(
|
199 |
-
pin_memory=True,
|
200 |
-
persistent_workers=True,
|
201 |
-
collate_fn=dict(type='default_collate'),
|
202 |
-
batch_size=64,
|
203 |
-
num_workers=12,
|
204 |
-
dataset=dict(
|
205 |
-
type='FungiTest',
|
206 |
-
data_root='data/fungi2023/',
|
207 |
-
ann_file='FungiCLEF2023_public_test_metadata_PRODUCTION.csv',
|
208 |
-
data_prefix='DF21/',
|
209 |
-
pipeline=[
|
210 |
-
dict(type='LoadImageFromFileFungi'),
|
211 |
-
dict(
|
212 |
-
type='ResizeEdge',
|
213 |
-
scale=438,
|
214 |
-
edge='short',
|
215 |
-
backend='pillow',
|
216 |
-
interpolation='bicubic'),
|
217 |
-
dict(type='CenterCrop', crop_size=384),
|
218 |
-
dict(
|
219 |
-
type='Normalize',
|
220 |
-
mean=[123.675, 116.28, 103.53],
|
221 |
-
std=[58.395, 57.12, 57.375],
|
222 |
-
to_rgb=True),
|
223 |
-
dict(type='PackInputs'),
|
224 |
-
]),
|
225 |
-
sampler=dict(type='DefaultSampler', shuffle=False))
|
226 |
-
test_evaluator = dict(
|
227 |
-
type='SingleLabelMetric', items=['precision', 'recall', 'f1-score'])
|
228 |
-
optim_wrapper = dict(
|
229 |
-
optimizer=dict(
|
230 |
-
type='AdamW',
|
231 |
-
lr=6.25e-05,
|
232 |
-
weight_decay=0.05,
|
233 |
-
eps=1e-08,
|
234 |
-
betas=(0.9, 0.999)),
|
235 |
-
paramwise_cfg=dict(
|
236 |
-
norm_decay_mult=0.0,
|
237 |
-
bias_decay_mult=0.0,
|
238 |
-
flat_decay_mult=0.0,
|
239 |
-
custom_keys=dict({
|
240 |
-
'.absolute_pos_embed': dict(decay_mult=0.0),
|
241 |
-
'.relative_position_bias_table': dict(decay_mult=0.0)
|
242 |
-
})),
|
243 |
-
clip_grad=dict(max_norm=5),
|
244 |
-
type='AmpOptimWrapper')
|
245 |
-
param_scheduler = [
|
246 |
-
dict(type='LinearLR', start_factor=0.01, by_epoch=False, end=4200),
|
247 |
-
dict(type='CosineAnnealingLR', eta_min=0, by_epoch=False, begin=4200)
|
248 |
-
]
|
249 |
-
train_cfg = dict(by_epoch=True, max_epochs=6, val_interval=1)
|
250 |
-
val_cfg = dict()
|
251 |
-
test_cfg = dict()
|
252 |
-
auto_scale_lr = dict(base_batch_size=64, enable=True)
|
253 |
-
default_scope = 'mmpretrain'
|
254 |
-
default_hooks = dict(
|
255 |
-
timer=dict(type='IterTimerHook'),
|
256 |
-
logger=dict(type='LoggerHook', interval=100),
|
257 |
-
param_scheduler=dict(type='ParamSchedulerHook'),
|
258 |
-
checkpoint=dict(type='CheckpointHook', interval=1),
|
259 |
-
sampler_seed=dict(type='DistSamplerSeedHook'),
|
260 |
-
visualization=dict(type='VisualizationHook', enable=False))
|
261 |
-
env_cfg = dict(
|
262 |
-
cudnn_benchmark=False,
|
263 |
-
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
264 |
-
dist_cfg=dict(backend='nccl'))
|
265 |
-
vis_backends = [
|
266 |
-
dict(type='LocalVisBackend'),
|
267 |
-
dict(type='TensorboardVisBackend')
|
268 |
-
]
|
269 |
-
visualizer = dict(
|
270 |
-
type='UniversalVisualizer',
|
271 |
-
vis_backends=[
|
272 |
-
dict(type='LocalVisBackend'),
|
273 |
-
dict(type='TensorboardVisBackend')
|
274 |
-
])
|
275 |
-
log_level = 'INFO'
|
276 |
-
load_from = None
|
277 |
-
resume = False
|
278 |
-
randomness = dict(seed=None, deterministic=False)
|
279 |
-
checkpoint = 'https://download.openmmlab.com/mmclassification/v0/swin-transformer/convert/swin-base_3rdparty_in21k-384px.pth'
|
280 |
-
custom_imports = dict(
|
281 |
-
imports=['mmpretrain_custom'], allow_failed_imports=False)
|
282 |
-
launcher = 'pytorch'
|
283 |
-
work_dir = './work_dirs/swin_base_b32x4-fp16_fungi+val_res_384_cb_epochs_6'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/swin_base_b32x4-fp16_fungi+val_res_384_cb_epochs_6_20230524-5197a7e6.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:5197a7e62e88740e7d950203e52a08996bcc3f6a648367c55ee9631e12220844
|
3 |
-
size 358213519
|
|
|
|
|
|
|
|
models/swin_large_b12x6-fp16_fungi+val_res_384_cb_epochs_6.py
DELETED
@@ -1,283 +0,0 @@
|
|
1 |
-
model = dict(
|
2 |
-
type='ImageClassifier',
|
3 |
-
backbone=dict(
|
4 |
-
type='SwinTransformer',
|
5 |
-
arch='large',
|
6 |
-
img_size=384,
|
7 |
-
stage_cfgs=dict(block_cfgs=dict(window_size=12)),
|
8 |
-
drop_path_rate=0.5,
|
9 |
-
init_cfg=dict(
|
10 |
-
type='Pretrained',
|
11 |
-
checkpoint=
|
12 |
-
'https://download.openmmlab.com/mmclassification/v0/swin-transformer/convert/swin-base_3rdparty_in21k-384px.pth',
|
13 |
-
prefix='backbone')),
|
14 |
-
neck=dict(type='GlobalAveragePooling'),
|
15 |
-
head=dict(
|
16 |
-
type='LinearClsHead',
|
17 |
-
num_classes=1604,
|
18 |
-
in_channels=1536,
|
19 |
-
init_cfg=None,
|
20 |
-
loss=dict(
|
21 |
-
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
|
22 |
-
cal_acc=False),
|
23 |
-
init_cfg=[
|
24 |
-
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.0),
|
25 |
-
dict(type='Constant', layer='LayerNorm', val=1.0, bias=0.0)
|
26 |
-
],
|
27 |
-
train_cfg=dict())
|
28 |
-
rand_increasing_policies = [
|
29 |
-
dict(type='AutoContrast'),
|
30 |
-
dict(type='Equalize'),
|
31 |
-
dict(type='Invert'),
|
32 |
-
dict(type='Rotate', magnitude_key='angle', magnitude_range=(0, 30)),
|
33 |
-
dict(type='Posterize', magnitude_key='bits', magnitude_range=(4, 0)),
|
34 |
-
dict(type='Solarize', magnitude_key='thr', magnitude_range=(256, 0)),
|
35 |
-
dict(
|
36 |
-
type='SolarizeAdd',
|
37 |
-
magnitude_key='magnitude',
|
38 |
-
magnitude_range=(0, 110)),
|
39 |
-
dict(
|
40 |
-
type='ColorTransform',
|
41 |
-
magnitude_key='magnitude',
|
42 |
-
magnitude_range=(0, 0.9)),
|
43 |
-
dict(type='Contrast', magnitude_key='magnitude', magnitude_range=(0, 0.9)),
|
44 |
-
dict(
|
45 |
-
type='Brightness', magnitude_key='magnitude',
|
46 |
-
magnitude_range=(0, 0.9)),
|
47 |
-
dict(
|
48 |
-
type='Sharpness', magnitude_key='magnitude', magnitude_range=(0, 0.9)),
|
49 |
-
dict(
|
50 |
-
type='Shear',
|
51 |
-
magnitude_key='magnitude',
|
52 |
-
magnitude_range=(0, 0.3),
|
53 |
-
direction='horizontal'),
|
54 |
-
dict(
|
55 |
-
type='Shear',
|
56 |
-
magnitude_key='magnitude',
|
57 |
-
magnitude_range=(0, 0.3),
|
58 |
-
direction='vertical'),
|
59 |
-
dict(
|
60 |
-
type='Translate',
|
61 |
-
magnitude_key='magnitude',
|
62 |
-
magnitude_range=(0, 0.45),
|
63 |
-
direction='horizontal'),
|
64 |
-
dict(
|
65 |
-
type='Translate',
|
66 |
-
magnitude_key='magnitude',
|
67 |
-
magnitude_range=(0, 0.45),
|
68 |
-
direction='vertical')
|
69 |
-
]
|
70 |
-
dataset_type = 'Fungi'
|
71 |
-
data_preprocessor = dict(
|
72 |
-
num_classes=1604,
|
73 |
-
mean=[123.675, 116.28, 103.53],
|
74 |
-
std=[58.395, 57.12, 57.375],
|
75 |
-
to_rgb=True)
|
76 |
-
bgr_mean = [103.53, 116.28, 123.675]
|
77 |
-
bgr_std = [57.375, 57.12, 58.395]
|
78 |
-
train_pipeline = [
|
79 |
-
dict(type='LoadImageFromFileFungi'),
|
80 |
-
dict(
|
81 |
-
type='RandomResizedCrop',
|
82 |
-
scale=384,
|
83 |
-
backend='pillow',
|
84 |
-
interpolation='bicubic'),
|
85 |
-
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
86 |
-
dict(
|
87 |
-
type='RandAugment',
|
88 |
-
policies='timm_increasing',
|
89 |
-
num_policies=2,
|
90 |
-
total_level=10,
|
91 |
-
magnitude_level=9,
|
92 |
-
magnitude_std=0.5,
|
93 |
-
hparams=dict(pad_val=[104, 116, 124], interpolation='bicubic')),
|
94 |
-
dict(
|
95 |
-
type='RandomErasing',
|
96 |
-
erase_prob=0.25,
|
97 |
-
mode='rand',
|
98 |
-
min_area_ratio=0.02,
|
99 |
-
max_area_ratio=0.3333333333333333,
|
100 |
-
fill_color=[103.53, 116.28, 123.675],
|
101 |
-
fill_std=[57.375, 57.12, 58.395]),
|
102 |
-
dict(type='PackInputs')
|
103 |
-
]
|
104 |
-
test_pipeline = [
|
105 |
-
dict(type='LoadImageFromFileFungi'),
|
106 |
-
dict(
|
107 |
-
type='ResizeEdge',
|
108 |
-
scale=438,
|
109 |
-
edge='short',
|
110 |
-
backend='pillow',
|
111 |
-
interpolation='bicubic'),
|
112 |
-
dict(type='CenterCrop', crop_size=384),
|
113 |
-
dict(type='PackInputs')
|
114 |
-
]
|
115 |
-
train_dataloader = dict(
|
116 |
-
pin_memory=True,
|
117 |
-
persistent_workers=True,
|
118 |
-
collate_fn=dict(type='default_collate'),
|
119 |
-
batch_size=32,
|
120 |
-
num_workers=14,
|
121 |
-
dataset=dict(
|
122 |
-
type='ClassBalancedDataset',
|
123 |
-
oversample_thr=0.01,
|
124 |
-
dataset=dict(
|
125 |
-
type='Fungi',
|
126 |
-
data_root='/scratch/slurm_tmpdir/job_22252118/',
|
127 |
-
ann_file='FungiCLEF2023_train_metadata_PRODUCTION.csv',
|
128 |
-
data_prefix='DF20/',
|
129 |
-
pipeline=[
|
130 |
-
dict(type='LoadImageFromFileFungi'),
|
131 |
-
dict(
|
132 |
-
type='RandomResizedCrop',
|
133 |
-
scale=384,
|
134 |
-
backend='pillow',
|
135 |
-
interpolation='bicubic'),
|
136 |
-
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
137 |
-
dict(
|
138 |
-
type='RandAugment',
|
139 |
-
policies='timm_increasing',
|
140 |
-
num_policies=2,
|
141 |
-
total_level=10,
|
142 |
-
magnitude_level=9,
|
143 |
-
magnitude_std=0.5,
|
144 |
-
hparams=dict(
|
145 |
-
pad_val=[104, 116, 124], interpolation='bicubic')),
|
146 |
-
dict(
|
147 |
-
type='RandomErasing',
|
148 |
-
erase_prob=0.25,
|
149 |
-
mode='rand',
|
150 |
-
min_area_ratio=0.02,
|
151 |
-
max_area_ratio=0.3333333333333333,
|
152 |
-
fill_color=[103.53, 116.28, 123.675],
|
153 |
-
fill_std=[57.375, 57.12, 58.395]),
|
154 |
-
dict(type='PackInputs')
|
155 |
-
])),
|
156 |
-
sampler=dict(type='DefaultSampler', shuffle=True))
|
157 |
-
val_dataloader = dict(
|
158 |
-
pin_memory=True,
|
159 |
-
persistent_workers=True,
|
160 |
-
collate_fn=dict(type='default_collate'),
|
161 |
-
batch_size=64,
|
162 |
-
num_workers=12,
|
163 |
-
dataset=dict(
|
164 |
-
type='Fungi',
|
165 |
-
data_root='/scratch/slurm_tmpdir/job_22252118/',
|
166 |
-
ann_file='FungiCLEF2023_val_metadata_PRODUCTION.csv',
|
167 |
-
data_prefix='DF21/',
|
168 |
-
pipeline=[
|
169 |
-
dict(type='LoadImageFromFileFungi'),
|
170 |
-
dict(
|
171 |
-
type='RandomResizedCrop',
|
172 |
-
scale=384,
|
173 |
-
backend='pillow',
|
174 |
-
interpolation='bicubic'),
|
175 |
-
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
176 |
-
dict(
|
177 |
-
type='RandAugment',
|
178 |
-
policies='timm_increasing',
|
179 |
-
num_policies=2,
|
180 |
-
total_level=10,
|
181 |
-
magnitude_level=9,
|
182 |
-
magnitude_std=0.5,
|
183 |
-
hparams=dict(pad_val=[104, 116, 124],
|
184 |
-
interpolation='bicubic')),
|
185 |
-
dict(
|
186 |
-
type='RandomErasing',
|
187 |
-
erase_prob=0.25,
|
188 |
-
mode='rand',
|
189 |
-
min_area_ratio=0.02,
|
190 |
-
max_area_ratio=0.3333333333333333,
|
191 |
-
fill_color=[103.53, 116.28, 123.675],
|
192 |
-
fill_std=[57.375, 57.12, 58.395]),
|
193 |
-
dict(type='PackInputs')
|
194 |
-
]),
|
195 |
-
sampler=dict(type='DefaultSampler', shuffle=False))
|
196 |
-
val_evaluator = dict(
|
197 |
-
type='SingleLabelMetric', items=['precision', 'recall', 'f1-score'])
|
198 |
-
test_dataloader = dict(
|
199 |
-
pin_memory=True,
|
200 |
-
persistent_workers=True,
|
201 |
-
collate_fn=dict(type='default_collate'),
|
202 |
-
batch_size=32,
|
203 |
-
num_workers=12,
|
204 |
-
dataset=dict(
|
205 |
-
type='FungiTest',
|
206 |
-
data_root='data/fungi2023/',
|
207 |
-
ann_file='FungiCLEF2023_public_test_metadata_PRODUCTION.csv',
|
208 |
-
data_prefix='DF21/',
|
209 |
-
pipeline=[
|
210 |
-
dict(type='LoadImageFromFileFungi'),
|
211 |
-
dict(
|
212 |
-
type='ResizeEdge',
|
213 |
-
scale=438,
|
214 |
-
edge='short',
|
215 |
-
backend='pillow',
|
216 |
-
interpolation='bicubic'),
|
217 |
-
dict(type='CenterCrop', crop_size=384),
|
218 |
-
dict(
|
219 |
-
type='Normalize',
|
220 |
-
mean=[123.675, 116.28, 103.53],
|
221 |
-
std=[58.395, 57.12, 57.375],
|
222 |
-
to_rgb=True),
|
223 |
-
dict(type='PackInputs'),
|
224 |
-
]),
|
225 |
-
sampler=dict(type='DefaultSampler', shuffle=False))
|
226 |
-
test_evaluator = dict(
|
227 |
-
type='SingleLabelMetric', items=['precision', 'recall', 'f1-score'])
|
228 |
-
optim_wrapper = dict(
|
229 |
-
optimizer=dict(
|
230 |
-
type='AdamW',
|
231 |
-
lr=6.25e-05,
|
232 |
-
weight_decay=0.05,
|
233 |
-
eps=1e-08,
|
234 |
-
betas=(0.9, 0.999)),
|
235 |
-
paramwise_cfg=dict(
|
236 |
-
norm_decay_mult=0.0,
|
237 |
-
bias_decay_mult=0.0,
|
238 |
-
flat_decay_mult=0.0,
|
239 |
-
custom_keys=dict({
|
240 |
-
'.absolute_pos_embed': dict(decay_mult=0.0),
|
241 |
-
'.relative_position_bias_table': dict(decay_mult=0.0)
|
242 |
-
})),
|
243 |
-
clip_grad=dict(max_norm=5),
|
244 |
-
type='AmpOptimWrapper')
|
245 |
-
param_scheduler = [
|
246 |
-
dict(type='LinearLR', start_factor=0.01, by_epoch=False, end=4200),
|
247 |
-
dict(type='CosineAnnealingLR', eta_min=0, by_epoch=False, begin=4200)
|
248 |
-
]
|
249 |
-
train_cfg = dict(by_epoch=True, max_epochs=6, val_interval=1)
|
250 |
-
val_cfg = dict()
|
251 |
-
test_cfg = dict()
|
252 |
-
auto_scale_lr = dict(base_batch_size=64, enable=True)
|
253 |
-
default_scope = 'mmpretrain'
|
254 |
-
default_hooks = dict(
|
255 |
-
timer=dict(type='IterTimerHook'),
|
256 |
-
logger=dict(type='LoggerHook', interval=100),
|
257 |
-
param_scheduler=dict(type='ParamSchedulerHook'),
|
258 |
-
checkpoint=dict(type='CheckpointHook', interval=1),
|
259 |
-
sampler_seed=dict(type='DistSamplerSeedHook'),
|
260 |
-
visualization=dict(type='VisualizationHook', enable=False))
|
261 |
-
env_cfg = dict(
|
262 |
-
cudnn_benchmark=False,
|
263 |
-
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
264 |
-
dist_cfg=dict(backend='nccl'))
|
265 |
-
vis_backends = [
|
266 |
-
dict(type='LocalVisBackend'),
|
267 |
-
dict(type='TensorboardVisBackend')
|
268 |
-
]
|
269 |
-
visualizer = dict(
|
270 |
-
type='UniversalVisualizer',
|
271 |
-
vis_backends=[
|
272 |
-
dict(type='LocalVisBackend'),
|
273 |
-
dict(type='TensorboardVisBackend')
|
274 |
-
])
|
275 |
-
log_level = 'INFO'
|
276 |
-
load_from = None
|
277 |
-
resume = False
|
278 |
-
randomness = dict(seed=None, deterministic=False)
|
279 |
-
checkpoint = 'https://download.openmmlab.com/mmclassification/v0/swin-transformer/convert/swin-base_3rdparty_in21k-384px.pth'
|
280 |
-
custom_imports = dict(
|
281 |
-
imports=['mmpretrain_custom'], allow_failed_imports=False)
|
282 |
-
launcher = 'pytorch'
|
283 |
-
work_dir = './work_dirs/swin_base_b32x4-fp16_fungi+val_res_384_cb_epochs_6'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/swin_large_b12x6-fp16_fungi+val_res_384_cb_epochs_6_20230524-9582690d.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:9582690db5cf1d4f8d03db3804542adb8164bbf7e9386b30cf9029661fbeb1e1
|
3 |
-
size 794832796
|
|
|
|
|
|
|
|
models/swin_large_b12x6-fp16_fungi+val_res_384_cb_epochs_6_no-margin.py
DELETED
@@ -1,283 +0,0 @@
|
|
1 |
-
model = dict(
|
2 |
-
type='ImageClassifier',
|
3 |
-
backbone=dict(
|
4 |
-
type='SwinTransformer',
|
5 |
-
arch='large',
|
6 |
-
img_size=384,
|
7 |
-
stage_cfgs=dict(block_cfgs=dict(window_size=12)),
|
8 |
-
drop_path_rate=0.5,
|
9 |
-
init_cfg=dict(
|
10 |
-
type='Pretrained',
|
11 |
-
checkpoint=
|
12 |
-
'https://download.openmmlab.com/mmclassification/v0/swin-transformer/convert/swin-base_3rdparty_in21k-384px.pth',
|
13 |
-
prefix='backbone')),
|
14 |
-
neck=dict(type='GlobalAveragePooling'),
|
15 |
-
head=dict(
|
16 |
-
type='LinearClsHead',
|
17 |
-
num_classes=1604,
|
18 |
-
in_channels=1536,
|
19 |
-
init_cfg=None,
|
20 |
-
loss=dict(
|
21 |
-
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
|
22 |
-
cal_acc=False),
|
23 |
-
init_cfg=[
|
24 |
-
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.0),
|
25 |
-
dict(type='Constant', layer='LayerNorm', val=1.0, bias=0.0)
|
26 |
-
],
|
27 |
-
train_cfg=dict())
|
28 |
-
rand_increasing_policies = [
|
29 |
-
dict(type='AutoContrast'),
|
30 |
-
dict(type='Equalize'),
|
31 |
-
dict(type='Invert'),
|
32 |
-
dict(type='Rotate', magnitude_key='angle', magnitude_range=(0, 30)),
|
33 |
-
dict(type='Posterize', magnitude_key='bits', magnitude_range=(4, 0)),
|
34 |
-
dict(type='Solarize', magnitude_key='thr', magnitude_range=(256, 0)),
|
35 |
-
dict(
|
36 |
-
type='SolarizeAdd',
|
37 |
-
magnitude_key='magnitude',
|
38 |
-
magnitude_range=(0, 110)),
|
39 |
-
dict(
|
40 |
-
type='ColorTransform',
|
41 |
-
magnitude_key='magnitude',
|
42 |
-
magnitude_range=(0, 0.9)),
|
43 |
-
dict(type='Contrast', magnitude_key='magnitude', magnitude_range=(0, 0.9)),
|
44 |
-
dict(
|
45 |
-
type='Brightness', magnitude_key='magnitude',
|
46 |
-
magnitude_range=(0, 0.9)),
|
47 |
-
dict(
|
48 |
-
type='Sharpness', magnitude_key='magnitude', magnitude_range=(0, 0.9)),
|
49 |
-
dict(
|
50 |
-
type='Shear',
|
51 |
-
magnitude_key='magnitude',
|
52 |
-
magnitude_range=(0, 0.3),
|
53 |
-
direction='horizontal'),
|
54 |
-
dict(
|
55 |
-
type='Shear',
|
56 |
-
magnitude_key='magnitude',
|
57 |
-
magnitude_range=(0, 0.3),
|
58 |
-
direction='vertical'),
|
59 |
-
dict(
|
60 |
-
type='Translate',
|
61 |
-
magnitude_key='magnitude',
|
62 |
-
magnitude_range=(0, 0.45),
|
63 |
-
direction='horizontal'),
|
64 |
-
dict(
|
65 |
-
type='Translate',
|
66 |
-
magnitude_key='magnitude',
|
67 |
-
magnitude_range=(0, 0.45),
|
68 |
-
direction='vertical')
|
69 |
-
]
|
70 |
-
dataset_type = 'Fungi'
|
71 |
-
data_preprocessor = dict(
|
72 |
-
num_classes=1604,
|
73 |
-
mean=[123.675, 116.28, 103.53],
|
74 |
-
std=[58.395, 57.12, 57.375],
|
75 |
-
to_rgb=True)
|
76 |
-
bgr_mean = [103.53, 116.28, 123.675]
|
77 |
-
bgr_std = [57.375, 57.12, 58.395]
|
78 |
-
train_pipeline = [
|
79 |
-
dict(type='LoadImageFromFileFungi'),
|
80 |
-
dict(
|
81 |
-
type='RandomResizedCrop',
|
82 |
-
scale=384,
|
83 |
-
backend='pillow',
|
84 |
-
interpolation='bicubic'),
|
85 |
-
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
86 |
-
dict(
|
87 |
-
type='RandAugment',
|
88 |
-
policies='timm_increasing',
|
89 |
-
num_policies=2,
|
90 |
-
total_level=10,
|
91 |
-
magnitude_level=9,
|
92 |
-
magnitude_std=0.5,
|
93 |
-
hparams=dict(pad_val=[104, 116, 124], interpolation='bicubic')),
|
94 |
-
dict(
|
95 |
-
type='RandomErasing',
|
96 |
-
erase_prob=0.25,
|
97 |
-
mode='rand',
|
98 |
-
min_area_ratio=0.02,
|
99 |
-
max_area_ratio=0.3333333333333333,
|
100 |
-
fill_color=[103.53, 116.28, 123.675],
|
101 |
-
fill_std=[57.375, 57.12, 58.395]),
|
102 |
-
dict(type='PackInputs')
|
103 |
-
]
|
104 |
-
test_pipeline = [
|
105 |
-
dict(type='LoadImageFromFileFungi'),
|
106 |
-
dict(
|
107 |
-
type='ResizeEdge',
|
108 |
-
scale=438,
|
109 |
-
edge='short',
|
110 |
-
backend='pillow',
|
111 |
-
interpolation='bicubic'),
|
112 |
-
dict(type='CenterCrop', crop_size=384),
|
113 |
-
dict(type='PackInputs')
|
114 |
-
]
|
115 |
-
train_dataloader = dict(
|
116 |
-
pin_memory=True,
|
117 |
-
persistent_workers=True,
|
118 |
-
collate_fn=dict(type='default_collate'),
|
119 |
-
batch_size=32,
|
120 |
-
num_workers=14,
|
121 |
-
dataset=dict(
|
122 |
-
type='ClassBalancedDataset',
|
123 |
-
oversample_thr=0.01,
|
124 |
-
dataset=dict(
|
125 |
-
type='Fungi',
|
126 |
-
data_root='/scratch/slurm_tmpdir/job_22252118/',
|
127 |
-
ann_file='FungiCLEF2023_train_metadata_PRODUCTION.csv',
|
128 |
-
data_prefix='DF20/',
|
129 |
-
pipeline=[
|
130 |
-
dict(type='LoadImageFromFileFungi'),
|
131 |
-
dict(
|
132 |
-
type='RandomResizedCrop',
|
133 |
-
scale=384,
|
134 |
-
backend='pillow',
|
135 |
-
interpolation='bicubic'),
|
136 |
-
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
137 |
-
dict(
|
138 |
-
type='RandAugment',
|
139 |
-
policies='timm_increasing',
|
140 |
-
num_policies=2,
|
141 |
-
total_level=10,
|
142 |
-
magnitude_level=9,
|
143 |
-
magnitude_std=0.5,
|
144 |
-
hparams=dict(
|
145 |
-
pad_val=[104, 116, 124], interpolation='bicubic')),
|
146 |
-
dict(
|
147 |
-
type='RandomErasing',
|
148 |
-
erase_prob=0.25,
|
149 |
-
mode='rand',
|
150 |
-
min_area_ratio=0.02,
|
151 |
-
max_area_ratio=0.3333333333333333,
|
152 |
-
fill_color=[103.53, 116.28, 123.675],
|
153 |
-
fill_std=[57.375, 57.12, 58.395]),
|
154 |
-
dict(type='PackInputs')
|
155 |
-
])),
|
156 |
-
sampler=dict(type='DefaultSampler', shuffle=True))
|
157 |
-
val_dataloader = dict(
|
158 |
-
pin_memory=True,
|
159 |
-
persistent_workers=True,
|
160 |
-
collate_fn=dict(type='default_collate'),
|
161 |
-
batch_size=64,
|
162 |
-
num_workers=12,
|
163 |
-
dataset=dict(
|
164 |
-
type='Fungi',
|
165 |
-
data_root='/scratch/slurm_tmpdir/job_22252118/',
|
166 |
-
ann_file='FungiCLEF2023_val_metadata_PRODUCTION.csv',
|
167 |
-
data_prefix='DF21/',
|
168 |
-
pipeline=[
|
169 |
-
dict(type='LoadImageFromFileFungi'),
|
170 |
-
dict(
|
171 |
-
type='RandomResizedCrop',
|
172 |
-
scale=384,
|
173 |
-
backend='pillow',
|
174 |
-
interpolation='bicubic'),
|
175 |
-
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
176 |
-
dict(
|
177 |
-
type='RandAugment',
|
178 |
-
policies='timm_increasing',
|
179 |
-
num_policies=2,
|
180 |
-
total_level=10,
|
181 |
-
magnitude_level=9,
|
182 |
-
magnitude_std=0.5,
|
183 |
-
hparams=dict(pad_val=[104, 116, 124],
|
184 |
-
interpolation='bicubic')),
|
185 |
-
dict(
|
186 |
-
type='RandomErasing',
|
187 |
-
erase_prob=0.25,
|
188 |
-
mode='rand',
|
189 |
-
min_area_ratio=0.02,
|
190 |
-
max_area_ratio=0.3333333333333333,
|
191 |
-
fill_color=[103.53, 116.28, 123.675],
|
192 |
-
fill_std=[57.375, 57.12, 58.395]),
|
193 |
-
dict(type='PackInputs')
|
194 |
-
]),
|
195 |
-
sampler=dict(type='DefaultSampler', shuffle=False))
|
196 |
-
val_evaluator = dict(
|
197 |
-
type='SingleLabelMetric', items=['precision', 'recall', 'f1-score'])
|
198 |
-
test_dataloader = dict(
|
199 |
-
pin_memory=True,
|
200 |
-
persistent_workers=True,
|
201 |
-
collate_fn=dict(type='default_collate'),
|
202 |
-
batch_size=32,
|
203 |
-
num_workers=12,
|
204 |
-
dataset=dict(
|
205 |
-
type='FungiTest',
|
206 |
-
data_root='data/fungi2023/',
|
207 |
-
ann_file='FungiCLEF2023_public_test_metadata_PRODUCTION.csv',
|
208 |
-
data_prefix='DF21/',
|
209 |
-
pipeline=[
|
210 |
-
dict(type='LoadImageFromFileFungi'),
|
211 |
-
dict(
|
212 |
-
type='ResizeEdge',
|
213 |
-
scale=384,
|
214 |
-
edge='short',
|
215 |
-
backend='pillow',
|
216 |
-
interpolation='bicubic'),
|
217 |
-
dict(type='CenterCrop', crop_size=384),
|
218 |
-
dict(
|
219 |
-
type='Normalize',
|
220 |
-
mean=[123.675, 116.28, 103.53],
|
221 |
-
std=[58.395, 57.12, 57.375],
|
222 |
-
to_rgb=True),
|
223 |
-
dict(type='PackInputs'),
|
224 |
-
]),
|
225 |
-
sampler=dict(type='DefaultSampler', shuffle=False))
|
226 |
-
test_evaluator = dict(
|
227 |
-
type='SingleLabelMetric', items=['precision', 'recall', 'f1-score'])
|
228 |
-
optim_wrapper = dict(
|
229 |
-
optimizer=dict(
|
230 |
-
type='AdamW',
|
231 |
-
lr=6.25e-05,
|
232 |
-
weight_decay=0.05,
|
233 |
-
eps=1e-08,
|
234 |
-
betas=(0.9, 0.999)),
|
235 |
-
paramwise_cfg=dict(
|
236 |
-
norm_decay_mult=0.0,
|
237 |
-
bias_decay_mult=0.0,
|
238 |
-
flat_decay_mult=0.0,
|
239 |
-
custom_keys=dict({
|
240 |
-
'.absolute_pos_embed': dict(decay_mult=0.0),
|
241 |
-
'.relative_position_bias_table': dict(decay_mult=0.0)
|
242 |
-
})),
|
243 |
-
clip_grad=dict(max_norm=5),
|
244 |
-
type='AmpOptimWrapper')
|
245 |
-
param_scheduler = [
|
246 |
-
dict(type='LinearLR', start_factor=0.01, by_epoch=False, end=4200),
|
247 |
-
dict(type='CosineAnnealingLR', eta_min=0, by_epoch=False, begin=4200)
|
248 |
-
]
|
249 |
-
train_cfg = dict(by_epoch=True, max_epochs=6, val_interval=1)
|
250 |
-
val_cfg = dict()
|
251 |
-
test_cfg = dict()
|
252 |
-
auto_scale_lr = dict(base_batch_size=64, enable=True)
|
253 |
-
default_scope = 'mmpretrain'
|
254 |
-
default_hooks = dict(
|
255 |
-
timer=dict(type='IterTimerHook'),
|
256 |
-
logger=dict(type='LoggerHook', interval=100),
|
257 |
-
param_scheduler=dict(type='ParamSchedulerHook'),
|
258 |
-
checkpoint=dict(type='CheckpointHook', interval=1),
|
259 |
-
sampler_seed=dict(type='DistSamplerSeedHook'),
|
260 |
-
visualization=dict(type='VisualizationHook', enable=False))
|
261 |
-
env_cfg = dict(
|
262 |
-
cudnn_benchmark=False,
|
263 |
-
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
264 |
-
dist_cfg=dict(backend='nccl'))
|
265 |
-
vis_backends = [
|
266 |
-
dict(type='LocalVisBackend'),
|
267 |
-
dict(type='TensorboardVisBackend')
|
268 |
-
]
|
269 |
-
visualizer = dict(
|
270 |
-
type='UniversalVisualizer',
|
271 |
-
vis_backends=[
|
272 |
-
dict(type='LocalVisBackend'),
|
273 |
-
dict(type='TensorboardVisBackend')
|
274 |
-
])
|
275 |
-
log_level = 'INFO'
|
276 |
-
load_from = None
|
277 |
-
resume = False
|
278 |
-
randomness = dict(seed=None, deterministic=False)
|
279 |
-
checkpoint = 'https://download.openmmlab.com/mmclassification/v0/swin-transformer/convert/swin-base_3rdparty_in21k-384px.pth'
|
280 |
-
custom_imports = dict(
|
281 |
-
imports=['mmpretrain_custom'], allow_failed_imports=False)
|
282 |
-
launcher = 'pytorch'
|
283 |
-
work_dir = './work_dirs/swin_base_b32x4-fp16_fungi+val_res_384_cb_epochs_6'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/{swinv2_base_w24_b32x4-fp16_fungi+val_res_384_cb_epochs_6.py → swinv2_base_w24_b16x4-fp16_fungi+val_res_384_cb_epochs_6.py}
RENAMED
@@ -1,284 +1,366 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
model = dict(
|
2 |
-
type='ImageClassifier',
|
3 |
backbone=dict(
|
4 |
-
type='SwinTransformerV2',
|
5 |
arch='base',
|
6 |
-
img_size=384,
|
7 |
drop_path_rate=0.2,
|
8 |
-
|
9 |
-
pretrained_window_sizes=[12, 12, 12, 6],
|
10 |
init_cfg=dict(
|
11 |
-
type='Pretrained',
|
12 |
checkpoint=
|
13 |
'https://download.openmmlab.com/mmclassification/v0/swin-v2/pretrain/swinv2-base-w12_3rdparty_in21k-192px_20220803-f7dc9763.pth',
|
14 |
-
prefix='backbone'
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
head=dict(
|
17 |
-
|
18 |
-
num_classes=1604,
|
19 |
in_channels=1024,
|
20 |
init_cfg=None,
|
21 |
loss=dict(
|
22 |
-
|
23 |
-
|
|
|
24 |
init_cfg=[
|
25 |
-
dict(
|
26 |
-
dict(
|
27 |
],
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
rand_increasing_policies = [
|
30 |
dict(type='AutoContrast'),
|
31 |
dict(type='Equalize'),
|
32 |
dict(type='Invert'),
|
33 |
-
dict(
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
dict(
|
37 |
-
type='SolarizeAdd',
|
38 |
magnitude_key='magnitude',
|
39 |
-
magnitude_range=(
|
|
|
|
|
|
|
|
|
40 |
dict(
|
41 |
-
type='ColorTransform',
|
42 |
magnitude_key='magnitude',
|
43 |
-
magnitude_range=(
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
dict(
|
49 |
-
|
|
|
|
|
|
|
50 |
dict(
|
51 |
-
type='Shear',
|
52 |
magnitude_key='magnitude',
|
53 |
-
magnitude_range=(
|
54 |
-
|
|
|
|
|
|
|
55 |
dict(
|
56 |
-
type='Shear',
|
57 |
magnitude_key='magnitude',
|
58 |
-
magnitude_range=(
|
59 |
-
|
|
|
|
|
|
|
60 |
dict(
|
61 |
-
|
62 |
magnitude_key='magnitude',
|
63 |
-
magnitude_range=(
|
64 |
-
|
|
|
|
|
|
|
65 |
dict(
|
66 |
-
|
67 |
magnitude_key='magnitude',
|
68 |
-
magnitude_range=(
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
num_classes=1604,
|
74 |
-
mean=[123.675, 116.28, 103.53],
|
75 |
-
std=[58.395, 57.12, 57.375],
|
76 |
-
to_rgb=True)
|
77 |
-
bgr_mean = [103.53, 116.28, 123.675]
|
78 |
-
bgr_std = [57.375, 57.12, 58.395]
|
79 |
-
train_pipeline = [
|
80 |
-
dict(type='LoadImageFromFileFungi'),
|
81 |
-
dict(
|
82 |
-
type='RandomResizedCrop',
|
83 |
-
scale=384,
|
84 |
-
backend='pillow',
|
85 |
-
interpolation='bicubic'),
|
86 |
-
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
87 |
dict(
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
dict(
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
dict(type='PackInputs')
|
104 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
test_pipeline = [
|
106 |
dict(type='LoadImageFromFileFungi'),
|
107 |
dict(
|
108 |
-
type='ResizeEdge',
|
109 |
-
scale=438,
|
110 |
-
edge='short',
|
111 |
backend='pillow',
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
115 |
]
|
|
|
116 |
train_dataloader = dict(
|
117 |
-
|
118 |
-
persistent_workers=True,
|
119 |
collate_fn=dict(type='default_collate'),
|
120 |
-
batch_size=32,
|
121 |
-
num_workers=14,
|
122 |
dataset=dict(
|
123 |
-
type='ClassBalancedDataset',
|
124 |
-
oversample_thr=0.01,
|
125 |
dataset=dict(
|
126 |
-
type='Fungi',
|
127 |
-
data_root='/scratch/slurm_tmpdir/job_22252299/',
|
128 |
ann_file='FungiCLEF2023_train_metadata_PRODUCTION.csv',
|
129 |
data_prefix='DF20/',
|
|
|
130 |
pipeline=[
|
131 |
dict(type='LoadImageFromFileFungi'),
|
132 |
dict(
|
133 |
-
type='RandomResizedCrop',
|
134 |
-
scale=384,
|
135 |
backend='pillow',
|
136 |
-
interpolation='bicubic'
|
137 |
-
|
|
|
|
|
138 |
dict(
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
143 |
magnitude_level=9,
|
144 |
magnitude_std=0.5,
|
145 |
-
|
146 |
-
|
|
|
|
|
147 |
dict(
|
148 |
-
type='RandomErasing',
|
149 |
erase_prob=0.25,
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
max_area_ratio=0.3333333333333333,
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
160 |
persistent_workers=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
collate_fn=dict(type='default_collate'),
|
162 |
-
batch_size=64,
|
163 |
-
num_workers=12,
|
164 |
dataset=dict(
|
165 |
-
type='Fungi',
|
166 |
-
data_root='/scratch/slurm_tmpdir/job_22252299/',
|
167 |
ann_file='FungiCLEF2023_val_metadata_PRODUCTION.csv',
|
168 |
data_prefix='DF21/',
|
|
|
169 |
pipeline=[
|
170 |
dict(type='LoadImageFromFileFungi'),
|
171 |
dict(
|
172 |
-
type='RandomResizedCrop',
|
173 |
-
scale=384,
|
174 |
backend='pillow',
|
175 |
-
interpolation='bicubic'),
|
176 |
-
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
177 |
-
dict(
|
178 |
-
type='RandAugment',
|
179 |
-
policies='timm_increasing',
|
180 |
-
num_policies=2,
|
181 |
-
total_level=10,
|
182 |
-
magnitude_level=9,
|
183 |
-
magnitude_std=0.5,
|
184 |
-
hparams=dict(pad_val=[104, 116, 124],
|
185 |
-
interpolation='bicubic')),
|
186 |
-
dict(
|
187 |
-
type='RandomErasing',
|
188 |
-
erase_prob=0.25,
|
189 |
-
mode='rand',
|
190 |
-
min_area_ratio=0.02,
|
191 |
-
max_area_ratio=0.3333333333333333,
|
192 |
-
fill_color=[103.53, 116.28, 123.675],
|
193 |
-
fill_std=[57.375, 57.12, 58.395]),
|
194 |
-
dict(type='PackInputs')
|
195 |
-
]),
|
196 |
-
sampler=dict(type='DefaultSampler', shuffle=False))
|
197 |
-
val_evaluator = dict(
|
198 |
-
type='SingleLabelMetric', items=['precision', 'recall', 'f1-score'])
|
199 |
-
test_dataloader = dict(
|
200 |
-
pin_memory=True,
|
201 |
-
persistent_workers=True,
|
202 |
-
collate_fn=dict(type='default_collate'),
|
203 |
-
batch_size=64,
|
204 |
-
num_workers=12,
|
205 |
-
dataset=dict(
|
206 |
-
type='FungiTest',
|
207 |
-
data_root='data/fungi2023/',
|
208 |
-
ann_file='FungiCLEF2023_public_test_metadata_PRODUCTION.csv',
|
209 |
-
data_prefix='DF21/',
|
210 |
-
pipeline=[
|
211 |
-
dict(type='LoadImageFromFileFungi'),
|
212 |
-
dict(
|
213 |
-
type='ResizeEdge',
|
214 |
-
scale=438,
|
215 |
edge='short',
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
dict(
|
220 |
-
type='Normalize',
|
221 |
-
mean=[123.675, 116.28, 103.53],
|
222 |
-
std=[58.395, 57.12, 57.375],
|
223 |
-
to_rgb=True),
|
224 |
dict(type='PackInputs'),
|
225 |
-
]
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
norm_decay_mult=0.0,
|
238 |
-
bias_decay_mult=0.0,
|
239 |
-
flat_decay_mult=0.0,
|
240 |
-
custom_keys=dict({
|
241 |
-
'.absolute_pos_embed': dict(decay_mult=0.0),
|
242 |
-
'.relative_position_bias_table': dict(decay_mult=0.0)
|
243 |
-
})),
|
244 |
-
clip_grad=dict(max_norm=5),
|
245 |
-
type='AmpOptimWrapper')
|
246 |
-
param_scheduler = [
|
247 |
-
dict(type='LinearLR', start_factor=0.01, by_epoch=False, end=4200),
|
248 |
-
dict(type='CosineAnnealingLR', eta_min=0, by_epoch=False, begin=4200)
|
249 |
-
]
|
250 |
-
train_cfg = dict(by_epoch=True, max_epochs=6, val_interval=1)
|
251 |
-
val_cfg = dict()
|
252 |
-
test_cfg = dict()
|
253 |
-
auto_scale_lr = dict(base_batch_size=64, enable=True)
|
254 |
-
default_scope = 'mmpretrain'
|
255 |
-
default_hooks = dict(
|
256 |
-
timer=dict(type='IterTimerHook'),
|
257 |
-
logger=dict(type='LoggerHook', interval=100),
|
258 |
-
param_scheduler=dict(type='ParamSchedulerHook'),
|
259 |
-
checkpoint=dict(type='CheckpointHook', interval=1),
|
260 |
-
sampler_seed=dict(type='DistSamplerSeedHook'),
|
261 |
-
visualization=dict(type='VisualizationHook', enable=False))
|
262 |
-
env_cfg = dict(
|
263 |
-
cudnn_benchmark=False,
|
264 |
-
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
265 |
-
dist_cfg=dict(backend='nccl'))
|
266 |
vis_backends = [
|
267 |
dict(type='LocalVisBackend'),
|
268 |
-
dict(type='TensorboardVisBackend')
|
269 |
]
|
270 |
visualizer = dict(
|
271 |
type='UniversalVisualizer',
|
272 |
vis_backends=[
|
273 |
dict(type='LocalVisBackend'),
|
274 |
-
dict(type='TensorboardVisBackend')
|
275 |
])
|
276 |
-
|
277 |
-
load_from = None
|
278 |
-
resume = False
|
279 |
-
randomness = dict(seed=None, deterministic=False)
|
280 |
-
checkpoint = 'https://download.openmmlab.com/mmclassification/v0/swin-v2/pretrain/swinv2-base-w12_3rdparty_in21k-192px_20220803-f7dc9763.pth'
|
281 |
-
custom_imports = dict(
|
282 |
-
imports=['mmpretrain_custom'], allow_failed_imports=False)
|
283 |
-
launcher = 'pytorch'
|
284 |
-
work_dir = './work_dirs/swinv2_base_w24_b32x4-fp16_fungi+val_res_384_cb_epochs_6'
|
|
|
1 |
+
auto_scale_lr = dict(base_batch_size=64)
|
2 |
+
bgr_mean = [
|
3 |
+
103.53,
|
4 |
+
116.28,
|
5 |
+
123.675,
|
6 |
+
]
|
7 |
+
bgr_std = [
|
8 |
+
57.375,
|
9 |
+
57.12,
|
10 |
+
58.395,
|
11 |
+
]
|
12 |
+
checkpoint = 'https://download.openmmlab.com/mmclassification/v0/swin-v2/pretrain/swinv2-base-w12_3rdparty_in21k-192px_20220803-f7dc9763.pth'
|
13 |
+
custom_imports = dict(
|
14 |
+
allow_failed_imports=False, imports=[
|
15 |
+
'mmpretrain_custom',
|
16 |
+
])
|
17 |
+
data_preprocessor = dict(
|
18 |
+
mean=[
|
19 |
+
123.675,
|
20 |
+
116.28,
|
21 |
+
103.53,
|
22 |
+
],
|
23 |
+
num_classes=1604,
|
24 |
+
std=[
|
25 |
+
58.395,
|
26 |
+
57.12,
|
27 |
+
57.375,
|
28 |
+
],
|
29 |
+
to_rgb=True)
|
30 |
+
dataset_type = 'Fungi'
|
31 |
+
default_hooks = dict(
|
32 |
+
checkpoint=dict(interval=1, type='CheckpointHook'),
|
33 |
+
logger=dict(interval=100, type='LoggerHook'),
|
34 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
35 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
36 |
+
timer=dict(type='IterTimerHook'),
|
37 |
+
visualization=dict(enable=False, type='VisualizationHook'))
|
38 |
+
default_scope = 'mmpretrain'
|
39 |
+
env_cfg = dict(
|
40 |
+
cudnn_benchmark=False,
|
41 |
+
dist_cfg=dict(backend='nccl'),
|
42 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
43 |
+
launcher = 'pytorch'
|
44 |
+
load_from = None
|
45 |
+
log_level = 'INFO'
|
46 |
model = dict(
|
|
|
47 |
backbone=dict(
|
|
|
48 |
arch='base',
|
|
|
49 |
drop_path_rate=0.2,
|
50 |
+
img_size=384,
|
|
|
51 |
init_cfg=dict(
|
|
|
52 |
checkpoint=
|
53 |
'https://download.openmmlab.com/mmclassification/v0/swin-v2/pretrain/swinv2-base-w12_3rdparty_in21k-192px_20220803-f7dc9763.pth',
|
54 |
+
prefix='backbone',
|
55 |
+
type='Pretrained'),
|
56 |
+
pretrained_window_sizes=[
|
57 |
+
12,
|
58 |
+
12,
|
59 |
+
12,
|
60 |
+
6,
|
61 |
+
],
|
62 |
+
type='SwinTransformerV2',
|
63 |
+
window_size=[
|
64 |
+
24,
|
65 |
+
24,
|
66 |
+
24,
|
67 |
+
12,
|
68 |
+
]),
|
69 |
head=dict(
|
70 |
+
cal_acc=False,
|
|
|
71 |
in_channels=1024,
|
72 |
init_cfg=None,
|
73 |
loss=dict(
|
74 |
+
label_smooth_val=0.1, mode='original', type='LabelSmoothLoss'),
|
75 |
+
num_classes=1604,
|
76 |
+
type='LinearClsHead'),
|
77 |
init_cfg=[
|
78 |
+
dict(bias=0.0, layer='Linear', std=0.02, type='TruncNormal'),
|
79 |
+
dict(bias=0.0, layer='LayerNorm', type='Constant', val=1.0),
|
80 |
],
|
81 |
+
neck=dict(type='GlobalAveragePooling'),
|
82 |
+
train_cfg=dict(),
|
83 |
+
type='ImageClassifier')
|
84 |
+
optim_wrapper = dict(
|
85 |
+
clip_grad=dict(max_norm=5),
|
86 |
+
optimizer=dict(
|
87 |
+
betas=(
|
88 |
+
0.9,
|
89 |
+
0.999,
|
90 |
+
),
|
91 |
+
eps=1e-08,
|
92 |
+
lr=3.125e-05,
|
93 |
+
type='AdamW',
|
94 |
+
weight_decay=0.05),
|
95 |
+
paramwise_cfg=dict(
|
96 |
+
bias_decay_mult=0.0,
|
97 |
+
custom_keys=dict({
|
98 |
+
'.absolute_pos_embed': dict(decay_mult=0.0),
|
99 |
+
'.relative_position_bias_table': dict(decay_mult=0.0)
|
100 |
+
}),
|
101 |
+
flat_decay_mult=0.0,
|
102 |
+
norm_decay_mult=0.0),
|
103 |
+
type='AmpOptimWrapper')
|
104 |
+
param_scheduler = [
|
105 |
+
dict(by_epoch=False, end=4200, start_factor=0.01, type='LinearLR'),
|
106 |
+
dict(begin=4200, by_epoch=False, eta_min=0, type='CosineAnnealingLR'),
|
107 |
+
]
|
108 |
rand_increasing_policies = [
|
109 |
dict(type='AutoContrast'),
|
110 |
dict(type='Equalize'),
|
111 |
dict(type='Invert'),
|
112 |
+
dict(magnitude_key='angle', magnitude_range=(
|
113 |
+
0,
|
114 |
+
30,
|
115 |
+
), type='Rotate'),
|
116 |
+
dict(magnitude_key='bits', magnitude_range=(
|
117 |
+
4,
|
118 |
+
0,
|
119 |
+
), type='Posterize'),
|
120 |
+
dict(magnitude_key='thr', magnitude_range=(
|
121 |
+
256,
|
122 |
+
0,
|
123 |
+
), type='Solarize'),
|
124 |
dict(
|
|
|
125 |
magnitude_key='magnitude',
|
126 |
+
magnitude_range=(
|
127 |
+
0,
|
128 |
+
110,
|
129 |
+
),
|
130 |
+
type='SolarizeAdd'),
|
131 |
dict(
|
|
|
132 |
magnitude_key='magnitude',
|
133 |
+
magnitude_range=(
|
134 |
+
0,
|
135 |
+
0.9,
|
136 |
+
),
|
137 |
+
type='ColorTransform'),
|
138 |
dict(
|
139 |
+
magnitude_key='magnitude', magnitude_range=(
|
140 |
+
0,
|
141 |
+
0.9,
|
142 |
+
), type='Contrast'),
|
143 |
dict(
|
|
|
144 |
magnitude_key='magnitude',
|
145 |
+
magnitude_range=(
|
146 |
+
0,
|
147 |
+
0.9,
|
148 |
+
),
|
149 |
+
type='Brightness'),
|
150 |
dict(
|
|
|
151 |
magnitude_key='magnitude',
|
152 |
+
magnitude_range=(
|
153 |
+
0,
|
154 |
+
0.9,
|
155 |
+
),
|
156 |
+
type='Sharpness'),
|
157 |
dict(
|
158 |
+
direction='horizontal',
|
159 |
magnitude_key='magnitude',
|
160 |
+
magnitude_range=(
|
161 |
+
0,
|
162 |
+
0.3,
|
163 |
+
),
|
164 |
+
type='Shear'),
|
165 |
dict(
|
166 |
+
direction='vertical',
|
167 |
magnitude_key='magnitude',
|
168 |
+
magnitude_range=(
|
169 |
+
0,
|
170 |
+
0.3,
|
171 |
+
),
|
172 |
+
type='Shear'),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
dict(
|
174 |
+
direction='horizontal',
|
175 |
+
magnitude_key='magnitude',
|
176 |
+
magnitude_range=(
|
177 |
+
0,
|
178 |
+
0.45,
|
179 |
+
),
|
180 |
+
type='Translate'),
|
181 |
dict(
|
182 |
+
direction='vertical',
|
183 |
+
magnitude_key='magnitude',
|
184 |
+
magnitude_range=(
|
185 |
+
0,
|
186 |
+
0.45,
|
187 |
+
),
|
188 |
+
type='Translate'),
|
|
|
189 |
]
|
190 |
+
randomness = dict(deterministic=False, seed=None)
|
191 |
+
resume = False
|
192 |
+
test_cfg = dict()
|
193 |
+
test_dataloader = dict(
|
194 |
+
batch_size=64,
|
195 |
+
collate_fn=dict(type='default_collate'),
|
196 |
+
dataset=dict(
|
197 |
+
ann_file='FungiCLEF2023_val_metadata_PRODUCTION.csv',
|
198 |
+
data_prefix='DF21/',
|
199 |
+
data_root='data/fungi2024/',
|
200 |
+
pipeline=[
|
201 |
+
dict(type='LoadImageFromFileFungi'),
|
202 |
+
dict(
|
203 |
+
backend='pillow',
|
204 |
+
edge='short',
|
205 |
+
interpolation='bicubic',
|
206 |
+
scale=438,
|
207 |
+
type='ResizeEdge'),
|
208 |
+
dict(crop_size=384, type='CenterCrop'),
|
209 |
+
dict(type='PackInputs'),
|
210 |
+
],
|
211 |
+
type='FungiTest'),
|
212 |
+
num_workers=8,
|
213 |
+
persistent_workers=True,
|
214 |
+
pin_memory=True,
|
215 |
+
sampler=dict(shuffle=False, type='DefaultSampler'))
|
216 |
+
test_evaluator = dict(
|
217 |
+
items=[
|
218 |
+
'precision',
|
219 |
+
'recall',
|
220 |
+
'f1-score',
|
221 |
+
], type='SingleLabelMetric')
|
222 |
test_pipeline = [
|
223 |
dict(type='LoadImageFromFileFungi'),
|
224 |
dict(
|
|
|
|
|
|
|
225 |
backend='pillow',
|
226 |
+
edge='short',
|
227 |
+
interpolation='bicubic',
|
228 |
+
scale=438,
|
229 |
+
type='ResizeEdge'),
|
230 |
+
dict(crop_size=384, type='CenterCrop'),
|
231 |
+
dict(type='PackInputs'),
|
232 |
]
|
233 |
+
train_cfg = dict(by_epoch=True, max_epochs=6, val_interval=1)
|
234 |
train_dataloader = dict(
|
235 |
+
batch_size=16,
|
|
|
236 |
collate_fn=dict(type='default_collate'),
|
|
|
|
|
237 |
dataset=dict(
|
|
|
|
|
238 |
dataset=dict(
|
|
|
|
|
239 |
ann_file='FungiCLEF2023_train_metadata_PRODUCTION.csv',
|
240 |
data_prefix='DF20/',
|
241 |
+
data_root='data/fungi2024/',
|
242 |
pipeline=[
|
243 |
dict(type='LoadImageFromFileFungi'),
|
244 |
dict(
|
|
|
|
|
245 |
backend='pillow',
|
246 |
+
interpolation='bicubic',
|
247 |
+
scale=384,
|
248 |
+
type='RandomResizedCrop'),
|
249 |
+
dict(direction='horizontal', prob=0.5, type='RandomFlip'),
|
250 |
dict(
|
251 |
+
hparams=dict(
|
252 |
+
interpolation='bicubic', pad_val=[
|
253 |
+
104,
|
254 |
+
116,
|
255 |
+
124,
|
256 |
+
]),
|
257 |
magnitude_level=9,
|
258 |
magnitude_std=0.5,
|
259 |
+
num_policies=2,
|
260 |
+
policies='timm_increasing',
|
261 |
+
total_level=10,
|
262 |
+
type='RandAugment'),
|
263 |
dict(
|
|
|
264 |
erase_prob=0.25,
|
265 |
+
fill_color=[
|
266 |
+
103.53,
|
267 |
+
116.28,
|
268 |
+
123.675,
|
269 |
+
],
|
270 |
+
fill_std=[
|
271 |
+
57.375,
|
272 |
+
57.12,
|
273 |
+
58.395,
|
274 |
+
],
|
275 |
max_area_ratio=0.3333333333333333,
|
276 |
+
min_area_ratio=0.02,
|
277 |
+
mode='rand',
|
278 |
+
type='RandomErasing'),
|
279 |
+
dict(type='PackInputs'),
|
280 |
+
],
|
281 |
+
type='Fungi'),
|
282 |
+
oversample_thr=0.01,
|
283 |
+
type='ClassBalancedDataset'),
|
284 |
+
num_workers=14,
|
285 |
persistent_workers=True,
|
286 |
+
pin_memory=True,
|
287 |
+
sampler=dict(shuffle=True, type='DefaultSampler'))
|
288 |
+
train_pipeline = [
|
289 |
+
dict(type='LoadImageFromFileFungi'),
|
290 |
+
dict(
|
291 |
+
backend='pillow',
|
292 |
+
interpolation='bicubic',
|
293 |
+
scale=384,
|
294 |
+
type='RandomResizedCrop'),
|
295 |
+
dict(direction='horizontal', prob=0.5, type='RandomFlip'),
|
296 |
+
dict(
|
297 |
+
hparams=dict(interpolation='bicubic', pad_val=[
|
298 |
+
104,
|
299 |
+
116,
|
300 |
+
124,
|
301 |
+
]),
|
302 |
+
magnitude_level=9,
|
303 |
+
magnitude_std=0.5,
|
304 |
+
num_policies=2,
|
305 |
+
policies='timm_increasing',
|
306 |
+
total_level=10,
|
307 |
+
type='RandAugment'),
|
308 |
+
dict(
|
309 |
+
erase_prob=0.25,
|
310 |
+
fill_color=[
|
311 |
+
103.53,
|
312 |
+
116.28,
|
313 |
+
123.675,
|
314 |
+
],
|
315 |
+
fill_std=[
|
316 |
+
57.375,
|
317 |
+
57.12,
|
318 |
+
58.395,
|
319 |
+
],
|
320 |
+
max_area_ratio=0.3333333333333333,
|
321 |
+
min_area_ratio=0.02,
|
322 |
+
mode='rand',
|
323 |
+
type='RandomErasing'),
|
324 |
+
dict(type='PackInputs'),
|
325 |
+
]
|
326 |
+
val_cfg = dict()
|
327 |
+
val_dataloader = dict(
|
328 |
+
batch_size=16,
|
329 |
collate_fn=dict(type='default_collate'),
|
|
|
|
|
330 |
dataset=dict(
|
|
|
|
|
331 |
ann_file='FungiCLEF2023_val_metadata_PRODUCTION.csv',
|
332 |
data_prefix='DF21/',
|
333 |
+
data_root='data/fungi2024/',
|
334 |
pipeline=[
|
335 |
dict(type='LoadImageFromFileFungi'),
|
336 |
dict(
|
|
|
|
|
337 |
backend='pillow',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
edge='short',
|
339 |
+
interpolation='bicubic',
|
340 |
+
scale=438,
|
341 |
+
type='ResizeEdge'),
|
342 |
+
dict(crop_size=384, type='CenterCrop'),
|
|
|
|
|
|
|
|
|
343 |
dict(type='PackInputs'),
|
344 |
+
],
|
345 |
+
type='Fungi'),
|
346 |
+
num_workers=12,
|
347 |
+
persistent_workers=True,
|
348 |
+
pin_memory=True,
|
349 |
+
sampler=dict(shuffle=False, type='DefaultSampler'))
|
350 |
+
val_evaluator = dict(
|
351 |
+
items=[
|
352 |
+
'precision',
|
353 |
+
'recall',
|
354 |
+
'f1-score',
|
355 |
+
], type='SingleLabelMetric')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
356 |
vis_backends = [
|
357 |
dict(type='LocalVisBackend'),
|
358 |
+
dict(type='TensorboardVisBackend'),
|
359 |
]
|
360 |
visualizer = dict(
|
361 |
type='UniversalVisualizer',
|
362 |
vis_backends=[
|
363 |
dict(type='LocalVisBackend'),
|
364 |
+
dict(type='TensorboardVisBackend'),
|
365 |
])
|
366 |
+
work_dir = './work_dirs/swinv2_base_w24_b16x4-fp16_fungi+val_res_384_cb_epochs_6'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/{swin_base_b16x4-fp16_fungi_res_384_cb_epochs_6_20230524-8b2afc73.pth → swinv2_base_w24_b16x4-fp16_fungi+val_res_384_cb_epochs_6_epoch_6_20240514-de00365e.pth}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de00365e7b99a5467cb093480337fa269a7ce814fa271f68ceb5ade913762436
|
3 |
+
size 413508870
|
models/swinv2_base_w24_b32x4-fp16_fungi+val_res_384_cb_epochs_6_20230524-a251a50a.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:a251a50a21746e66ee6e0f790cd35104296bc6838d3b1bc490d0c930a117f774
|
3 |
-
size 413462721
|
|
|
|
|
|
|
|
models/swinv2_base_w24_b32x4-fp16_fungi+val_res_384_cb_epochs_9_20230525-88a0bc68.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:88a0bc681d60df1eca31fc53db6595c58acfba80d3f8a0518598a01927272550
|
3 |
-
size 413461441
|
|
|
|
|
|
|
|