File size: 14,855 Bytes
2665c93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d3fa83
 
 
 
 
2665c93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d3fa83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2665c93
3d3fa83
2665c93
3d3fa83
 
2665c93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d3fa83
2665c93
 
3d3fa83
2665c93
 
3d3fa83
 
 
 
2665c93
3d3fa83
 
 
 
2665c93
3d3fa83
 
 
 
2665c93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d3fa83
 
 
 
 
 
 
 
 
 
2665c93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d3fa83
 
 
 
2665c93
3d3fa83
 
 
2665c93
 
 
 
 
3d3fa83
2665c93
 
3d3fa83
 
 
 
2665c93
 
 
3d3fa83
 
 
 
2665c93
 
 
3d3fa83
2665c93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d3fa83
 
 
 
2665c93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import math
from typing import Optional, Tuple, Union, List

import torch
import torch.utils.checkpoint
from torch import nn
from transformers.generation import GenerationMixin

from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from .configuration_step1 import Step1Config
from transformers.cache_utils import Cache, DynamicCache
from einops import rearrange
from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
)

logger = logging.get_logger(__name__)


def build_alibi_cache(block_size, n_heads, dtype, device):
    # get slopes
    n = 2 ** math.floor(math.log2(n_heads))  # nearest 2**n to n_heads
    m0 = 2.0 ** (-8.0 / n)
    # 2^(-8/n), 2^(-8*2/n), 2^(-8*3/n), ...
    slopes = torch.pow(m0, torch.arange(1, n + 1))
    if n < n_heads:
        m1 = 2.0 ** (-4.0 / n)
        # 2^(-8/(2n)), 2^(-8*3/(2n)), 2^(-8*5/(2n)), ...
        mm = torch.pow(m1, torch.arange(1, 1 + 2 * (n_heads - n), 2))
        slopes = torch.cat([slopes, mm])
    slopes = slopes.to(device)

    tril = torch.tril(torch.ones(1, 1, block_size, block_size, device=device))

    bias_rows = torch.arange(block_size, device=device).view(1, -1)
    bias_cols = torch.arange(block_size, device=device).view(-1, 1)
    bias = -torch.sqrt(bias_cols - bias_rows)
    bias = bias.view(1, block_size, block_size) * slopes.view(-1, 1, 1)
    bias = bias.masked_fill(tril == 0, float("-inf"))

    return bias.type(dtype)


class StepRMSNorm(torch.nn.Module):
    def __init__(self, hidden_size, eps=1e-5):
        super().__init__()
        self.weight = torch.nn.Parameter(torch.ones(hidden_size))
        self.eps = eps

    def forward(self, x: torch.Tensor):
        var = x.float().pow(2).mean(-1, keepdim=True)
        x = x * torch.rsqrt(var + self.eps).to(x.dtype)
        x = x * self.weight
        return x


class StepAttention(torch.nn.Module):
    def __init__(self, hidden_size, num_heads, num_groups, layer_idx: int):
        super().__init__()

        self.num_heads = num_heads
        self.num_groups = num_groups
        self.hidden_size = hidden_size
        self.head_dim = hidden_size // num_heads

        self.q_proj = torch.nn.Linear(hidden_size, hidden_size, bias=False)
        self.k_proj = torch.nn.Linear(
            hidden_size, num_groups * self.head_dim, bias=False
        )
        self.v_proj = torch.nn.Linear(
            hidden_size, num_groups * self.head_dim, bias=False
        )
        self.o_proj = torch.nn.Linear(hidden_size, hidden_size, bias=False)

        self.layer_idx = layer_idx

    def flash_attn_func(self, q, k, v, dropout_p=0.0, softmax_scale=None, causal=True,
                    return_attn_probs=False, tp_group_rank=0, tp_group_size=1):
        softmax_scale = q.size(-1) ** (-0.5) if softmax_scale is None else softmax_scale
        return torch.ops.Optimus.fwd(q, k, v, None, dropout_p, softmax_scale, causal, return_attn_probs, None, tp_group_rank, tp_group_size)[0]

    def forward(
        self,
        x: torch.Tensor,
        past_key_value: Optional[Cache] = None,
        attention_mask: Optional[torch.Tensor] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ):

        q: torch.Tensor = self.q_proj(x)
        k: torch.Tensor = self.k_proj(x)
        v: torch.Tensor = self.v_proj(x)
        if past_key_value is not None:
            cache_kwargs = {"cache_position": cache_position}
            k, v = past_key_value.update(k, v, self.layer_idx, cache_kwargs)

        q = rearrange(q, "b s (h d) -> b s h d", h=self.num_heads)
        k = rearrange(k, "b s (g d) -> b s g d", g=self.num_groups)
        v = rearrange(v, "b s (g d) -> b s g d", g=self.num_groups)

        try:
            if self.head_dim not in (64, 128):
                raise ValueError("head_dim must be 64 or 128")
            attn_output = self.flash_attn_func(q, k, v)
            attn_output = attn_output.flatten(-2, -1)
        except:
            k = k.repeat_interleave(self.num_heads // self.num_groups, dim=-2)
            v = v.repeat_interleave(self.num_heads // self.num_groups, dim=-2)

            attention_mask = build_alibi_cache(
                k.size(1), self.num_heads, dtype=q.dtype, device=q.device
            )[:, :, -q.size(1) :, :].contiguous()

            q = q.transpose(1, 2)
            k = k.transpose(1, 2)
            v = v.transpose(1, 2)

            attn_output: torch.Tensor = torch.nn.functional.scaled_dot_product_attention(
                q, k, v, attn_mask=attention_mask
            )

            attn_output = attn_output.transpose(1, 2).flatten(-2, -1)

        out = self.o_proj(attn_output)
        return out, None  # attn weights are not returned


class StepMLP(torch.nn.Module):
    def __init__(self, hidden_size, intermediate_size):
        super().__init__()
        self.gate_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
        self.up_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
        self.down_proj = torch.nn.Linear(intermediate_size, hidden_size, bias=False)

    def forward(self, x):
        gate = self.gate_proj(x)
        up = self.up_proj(x)
        x = torch.nn.functional.silu(gate) * up
        x = self.down_proj(x)
        return x


class StepLayer(torch.nn.Module):
    def __init__(self, config: Step1Config, layer_idx: int):
        super().__init__()
        self.layer_idx = layer_idx
        self.self_attn = StepAttention(
            hidden_size=config.hidden_size,
            num_heads=config.num_attention_heads,
            num_groups=config.num_attention_groups,
            layer_idx=layer_idx,
        )
        self.mlp = StepMLP(
            hidden_size=config.hidden_size,
            intermediate_size=config.intermediate_size,
        )
        self.input_layernorm = StepRMSNorm(
            hidden_size=config.hidden_size, eps=config.rms_norm_eps
        )
        self.post_attention_layernorm = StepRMSNorm(
            hidden_size=config.hidden_size, eps=config.rms_norm_eps
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
    ):
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        hidden_states, self_attn_weights = self.self_attn(hidden_states, past_key_value, attention_mask, cache_position)
        hidden_states = residual + hidden_states

        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states, )
        if output_attentions:
            outputs += (self_attn_weights,)
        return outputs


class StepPreTrainedModel(PreTrainedModel):
    config_class = Step1Config
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["StepLayer"]
    _skip_keys_device_placement = ["past_key_values"]
    _supports_cache_class = True
    _supports_static_cache = True

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()


class Step1Model(StepPreTrainedModel):
    """
    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]

    Args:
        config: Step1Config
    """

    def __init__(self, config: Step1Config):
        super().__init__(config)
        self.config = config
        self.embed_tokens = torch.nn.Embedding(config.vocab_size, config.hidden_size)

        self.layers = torch.nn.Sequential(
            *[
                StepLayer(config, layer_idx)
                for layer_idx in range(config.num_hidden_layers)
            ]
        )

        self.norm = StepRMSNorm(
            hidden_size=config.hidden_size, eps=config.rms_norm_eps
        )

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError(
                "You must specify exactly one of input_ids or inputs_embeds"
            )

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        if use_cache and past_key_values is None:
            past_key_values = DynamicCache()

        if cache_position is None:
            past_seen_tokens = (
                past_key_values.get_seq_length() if past_key_values is not None else 0
            )
            cache_position = torch.arange(
                past_seen_tokens,
                past_seen_tokens + inputs_embeds.shape[1],
                device=inputs_embeds.device,
            )

        causal_mask = attention_mask

        hidden_states = inputs_embeds

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None

        for decoder_layer in self.layers[: self.config.num_hidden_layers]:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            layer_outputs = decoder_layer(
                hidden_states,
                attention_mask=causal_mask,
                past_key_value=past_key_values,
                cache_position=cache_position,
                output_attentions=output_attentions,
            )

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        output = BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=past_key_values if use_cache else None,
            hidden_states=all_hidden_states,
            attentions=None,
        )
        return output if return_dict else output.to_tuple()


class Step1ForCausalLM(StepPreTrainedModel, GenerationMixin):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.model = Step1Model(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )

        hidden_states = outputs[0]
        # Only compute necessary logits, and do not upcast them to float if we are not computing the loss

        logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            loss = self.loss_function(
                logits=logits,
                labels=labels,
                vocab_size=self.config.vocab_size,
            )

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )