Step-Audio-TTS-3B / modeling_step1.py
buyun's picture
add custom ops
3d3fa83 verified
raw
history blame
14.9 kB
import math
from typing import Optional, Tuple, Union, List
import torch
import torch.utils.checkpoint
from torch import nn
from transformers.generation import GenerationMixin
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from .configuration_step1 import Step1Config
from transformers.cache_utils import Cache, DynamicCache
from einops import rearrange
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
)
logger = logging.get_logger(__name__)
def build_alibi_cache(block_size, n_heads, dtype, device):
# get slopes
n = 2 ** math.floor(math.log2(n_heads)) # nearest 2**n to n_heads
m0 = 2.0 ** (-8.0 / n)
# 2^(-8/n), 2^(-8*2/n), 2^(-8*3/n), ...
slopes = torch.pow(m0, torch.arange(1, n + 1))
if n < n_heads:
m1 = 2.0 ** (-4.0 / n)
# 2^(-8/(2n)), 2^(-8*3/(2n)), 2^(-8*5/(2n)), ...
mm = torch.pow(m1, torch.arange(1, 1 + 2 * (n_heads - n), 2))
slopes = torch.cat([slopes, mm])
slopes = slopes.to(device)
tril = torch.tril(torch.ones(1, 1, block_size, block_size, device=device))
bias_rows = torch.arange(block_size, device=device).view(1, -1)
bias_cols = torch.arange(block_size, device=device).view(-1, 1)
bias = -torch.sqrt(bias_cols - bias_rows)
bias = bias.view(1, block_size, block_size) * slopes.view(-1, 1, 1)
bias = bias.masked_fill(tril == 0, float("-inf"))
return bias.type(dtype)
class StepRMSNorm(torch.nn.Module):
def __init__(self, hidden_size, eps=1e-5):
super().__init__()
self.weight = torch.nn.Parameter(torch.ones(hidden_size))
self.eps = eps
def forward(self, x: torch.Tensor):
var = x.float().pow(2).mean(-1, keepdim=True)
x = x * torch.rsqrt(var + self.eps).to(x.dtype)
x = x * self.weight
return x
class StepAttention(torch.nn.Module):
def __init__(self, hidden_size, num_heads, num_groups, layer_idx: int):
super().__init__()
self.num_heads = num_heads
self.num_groups = num_groups
self.hidden_size = hidden_size
self.head_dim = hidden_size // num_heads
self.q_proj = torch.nn.Linear(hidden_size, hidden_size, bias=False)
self.k_proj = torch.nn.Linear(
hidden_size, num_groups * self.head_dim, bias=False
)
self.v_proj = torch.nn.Linear(
hidden_size, num_groups * self.head_dim, bias=False
)
self.o_proj = torch.nn.Linear(hidden_size, hidden_size, bias=False)
self.layer_idx = layer_idx
def flash_attn_func(self, q, k, v, dropout_p=0.0, softmax_scale=None, causal=True,
return_attn_probs=False, tp_group_rank=0, tp_group_size=1):
softmax_scale = q.size(-1) ** (-0.5) if softmax_scale is None else softmax_scale
return torch.ops.Optimus.fwd(q, k, v, None, dropout_p, softmax_scale, causal, return_attn_probs, None, tp_group_rank, tp_group_size)[0]
def forward(
self,
x: torch.Tensor,
past_key_value: Optional[Cache] = None,
attention_mask: Optional[torch.Tensor] = None,
cache_position: Optional[torch.LongTensor] = None,
):
q: torch.Tensor = self.q_proj(x)
k: torch.Tensor = self.k_proj(x)
v: torch.Tensor = self.v_proj(x)
if past_key_value is not None:
cache_kwargs = {"cache_position": cache_position}
k, v = past_key_value.update(k, v, self.layer_idx, cache_kwargs)
q = rearrange(q, "b s (h d) -> b s h d", h=self.num_heads)
k = rearrange(k, "b s (g d) -> b s g d", g=self.num_groups)
v = rearrange(v, "b s (g d) -> b s g d", g=self.num_groups)
try:
if self.head_dim not in (64, 128):
raise ValueError("head_dim must be 64 or 128")
attn_output = self.flash_attn_func(q, k, v)
attn_output = attn_output.flatten(-2, -1)
except:
k = k.repeat_interleave(self.num_heads // self.num_groups, dim=-2)
v = v.repeat_interleave(self.num_heads // self.num_groups, dim=-2)
attention_mask = build_alibi_cache(
k.size(1), self.num_heads, dtype=q.dtype, device=q.device
)[:, :, -q.size(1) :, :].contiguous()
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
attn_output: torch.Tensor = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=attention_mask
)
attn_output = attn_output.transpose(1, 2).flatten(-2, -1)
out = self.o_proj(attn_output)
return out, None # attn weights are not returned
class StepMLP(torch.nn.Module):
def __init__(self, hidden_size, intermediate_size):
super().__init__()
self.gate_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
self.up_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
self.down_proj = torch.nn.Linear(intermediate_size, hidden_size, bias=False)
def forward(self, x):
gate = self.gate_proj(x)
up = self.up_proj(x)
x = torch.nn.functional.silu(gate) * up
x = self.down_proj(x)
return x
class StepLayer(torch.nn.Module):
def __init__(self, config: Step1Config, layer_idx: int):
super().__init__()
self.layer_idx = layer_idx
self.self_attn = StepAttention(
hidden_size=config.hidden_size,
num_heads=config.num_attention_heads,
num_groups=config.num_attention_groups,
layer_idx=layer_idx,
)
self.mlp = StepMLP(
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
)
self.input_layernorm = StepRMSNorm(
hidden_size=config.hidden_size, eps=config.rms_norm_eps
)
self.post_attention_layernorm = StepRMSNorm(
hidden_size=config.hidden_size, eps=config.rms_norm_eps
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states, self_attn_weights = self.self_attn(hidden_states, past_key_value, attention_mask, cache_position)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states, )
if output_attentions:
outputs += (self_attn_weights,)
return outputs
class StepPreTrainedModel(PreTrainedModel):
config_class = Step1Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["StepLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_cache_class = True
_supports_static_cache = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class Step1Model(StepPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
Args:
config: Step1Config
"""
def __init__(self, config: Step1Config):
super().__init__(config)
self.config = config
self.embed_tokens = torch.nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = torch.nn.Sequential(
*[
StepLayer(config, layer_idx)
for layer_idx in range(config.num_hidden_layers)
]
)
self.norm = StepRMSNorm(
hidden_size=config.hidden_size, eps=config.rms_norm_eps
)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You must specify exactly one of input_ids or inputs_embeds"
)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = (
past_key_values.get_seq_length() if past_key_values is not None else 0
)
cache_position = torch.arange(
past_seen_tokens,
past_seen_tokens + inputs_embeds.shape[1],
device=inputs_embeds.device,
)
causal_mask = attention_mask
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
past_key_value=past_key_values,
cache_position=cache_position,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
output = BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=None,
)
return output if return_dict else output.to_tuple()
class Step1ForCausalLM(StepPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = Step1Model(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
loss = self.loss_function(
logits=logits,
labels=labels,
vocab_size=self.config.vocab_size,
)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)