Update README.md (#2)
Browse files- Update README.md (332231122f3ccbb033c8983e0def9dfcb13d2f14)
Co-authored-by: mrh <[email protected]>
README.md
CHANGED
@@ -3,15 +3,160 @@ license: apache-2.0
|
|
3 |
---
|
4 |
# Step-Audio-TTS-3B
|
5 |
|
|
|
6 |
|
7 |
-
|
8 |
|
9 |
-
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
|
|
17 |
For more information, please refer to our repository: [Step-Audio](https://github.com/stepfun-ai/Step-Audio).
|
|
|
3 |
---
|
4 |
# Step-Audio-TTS-3B
|
5 |
|
6 |
+
Step-Audio-TTS-3B represents the industry's first Text-to-Speech (TTS) model trained on a large-scale synthetic dataset utilizing the LLM-Chat paradigm. It has achieved SOTA Character Error Rate (CER) results on the SEED TTS Eval benchmark. The model supports multiple languages, a variety of emotional expressions, and diverse voice style controls. Notably, Step-Audio-TTS-3B is also the first TTS model in the industry capable of generating RAP and Humming, marking a significant advancement in the field of speech synthesis.
|
7 |
|
8 |
+
This repository provides the model weights for StepAudio-TTS-3B, which is a dual-codebook trained LLM (Large Language Model) for text-to-speech synthesis. Additionally, it includes a vocoder trained using the dual-codebook approach, as well as a specialized vocoder specifically optimized for humming generation. These resources collectively enable high-quality speech synthesis and humming capabilities, leveraging the advanced dual-codebook training methodology.
|
9 |
|
10 |
+
## Performance comparison of content consistency (CER/WER) between GLM-4-Voice and MinMo.
|
11 |
|
12 |
+
<table>
|
13 |
+
<thead>
|
14 |
+
<tr>
|
15 |
+
<th rowspan="2">Model</th>
|
16 |
+
<th style="text-align:center" colspan="1">test-zh</th>
|
17 |
+
<th style="text-align:center" colspan="1">test-en</th>
|
18 |
+
</tr>
|
19 |
+
<tr>
|
20 |
+
<th style="text-align:center">CER (%) ↓</th>
|
21 |
+
<th style="text-align:center">WER (%) ↓</th>
|
22 |
+
</tr>
|
23 |
+
</thead>
|
24 |
+
<tbody>
|
25 |
+
<tr>
|
26 |
+
<td>GLM-4-Voice</td>
|
27 |
+
<td style="text-align:center">2.19</td>
|
28 |
+
<td style="text-align:center">2.91</td>
|
29 |
+
</tr>
|
30 |
+
<tr>
|
31 |
+
<td>MinMo</td>
|
32 |
+
<td style="text-align:center">2.48</td>
|
33 |
+
<td style="text-align:center">2.90</td>
|
34 |
+
</tr>
|
35 |
+
<tr>
|
36 |
+
<td><strong>Step-Audio</strong></td>
|
37 |
+
<td style="text-align:center"><strong>1.53</strong></td>
|
38 |
+
<td style="text-align:center"><strong>2.71</strong></td>
|
39 |
+
</tr>
|
40 |
+
</tbody>
|
41 |
+
</table>
|
42 |
|
43 |
+
## Results of TTS Models on SEED Test Sets.
|
44 |
+
* StepAudio-TTS-3B-Single denotes dual-codebook backbone with single-codebook vocoder*
|
45 |
+
|
46 |
+
<table>
|
47 |
+
<thead>
|
48 |
+
<tr>
|
49 |
+
<th rowspan="2">Model</th>
|
50 |
+
<th style="text-align:center" colspan="2">test-zh</th>
|
51 |
+
<th style="text-align:center" colspan="2">test-en</th>
|
52 |
+
</tr>
|
53 |
+
<tr>
|
54 |
+
<th style="text-align:center">CER (%) ↓</th>
|
55 |
+
<th style="text-align:center">SS ↑</th>
|
56 |
+
<th style="text-align:center">WER (%) ↓</th>
|
57 |
+
<th style="text-align:center">SS ↑</th>
|
58 |
+
</tr>
|
59 |
+
</thead>
|
60 |
+
<tbody>
|
61 |
+
<tr>
|
62 |
+
<td>FireRedTTS</td>
|
63 |
+
<td style="text-align:center">1.51</td>
|
64 |
+
<td style="text-align:center">0.630</td>
|
65 |
+
<td style="text-align:center">3.82</td>
|
66 |
+
<td style="text-align:center">0.460</td>
|
67 |
+
</tr>
|
68 |
+
<tr>
|
69 |
+
<td>MaskGCT</td>
|
70 |
+
<td style="text-align:center">2.27</td>
|
71 |
+
<td style="text-align:center">0.774</td>
|
72 |
+
<td style="text-align:center">2.62</td>
|
73 |
+
<td style="text-align:center">0.774</td>
|
74 |
+
</tr>
|
75 |
+
<tr>
|
76 |
+
<td>CosyVoice</td>
|
77 |
+
<td style="text-align:center">3.63</td>
|
78 |
+
<td style="text-align:center">0.775</td>
|
79 |
+
<td style="text-align:center">4.29</td>
|
80 |
+
<td style="text-align:center">0.699</td>
|
81 |
+
</tr>
|
82 |
+
<tr>
|
83 |
+
<td>CosyVoice 2</td>
|
84 |
+
<td style="text-align:center">1.45</td>
|
85 |
+
<td style="text-align:center">0.806</td>
|
86 |
+
<td style="text-align:center">2.57</td>
|
87 |
+
<td style="text-align:center">0.736</td>
|
88 |
+
</tr>
|
89 |
+
<tr>
|
90 |
+
<td>CosyVoice 2-S</td>
|
91 |
+
<td style="text-align:center">1.45</td>
|
92 |
+
<td style="text-align:center">0.812</td>
|
93 |
+
<td style="text-align:center">2.38</td>
|
94 |
+
<td style="text-align:center">0.743</td>
|
95 |
+
</tr>
|
96 |
+
<tr>
|
97 |
+
<td><strong>Step-Audio-TTS-3B-Single</strong></td>
|
98 |
+
<td style="text-align:center">1.37</td>
|
99 |
+
<td style="text-align:center">0.802</td>
|
100 |
+
<td style="text-align:center">2.52</td>
|
101 |
+
<td style="text-align:center">0.704</td>
|
102 |
+
</tr>
|
103 |
+
<tr>
|
104 |
+
<td><strong>Step-Audio-TTS-3B</strong></td>
|
105 |
+
<td style="text-align:center"><strong>1.31</strong></td>
|
106 |
+
<td style="text-align:center">0.733</td>
|
107 |
+
<td style="text-align:center"><strong>2.31</strong></td>
|
108 |
+
<td style="text-align:center">0.660</td>
|
109 |
+
</tr>
|
110 |
+
<tr>
|
111 |
+
<td><strong>Step-Audio-TTS</strong></td>
|
112 |
+
<td style="text-align:center"><strong>1.17</strong></td>
|
113 |
+
<td style="text-align:center">0.73</td>
|
114 |
+
<td style="text-align:center"><strong>2.0</strong></td>
|
115 |
+
<td style="text-align:center">0.660</td>
|
116 |
+
</tr>
|
117 |
+
</tbody>
|
118 |
+
</table>
|
119 |
+
|
120 |
+
## Performance comparison of Dual-codebook Resynthesis with Cosyvoice.
|
121 |
|
122 |
+
<table>
|
123 |
+
<thead>
|
124 |
+
<tr>
|
125 |
+
<th style="text-align:center" rowspan="2">Token</th>
|
126 |
+
<th style="text-align:center" colspan="2">test-zh</th>
|
127 |
+
<th style="text-align:center" colspan="2">test-en</th>
|
128 |
+
</tr>
|
129 |
+
<tr>
|
130 |
+
<th style="text-align:center">CER (%) ↓</th>
|
131 |
+
<th style="text-align:center">SS ↑</th>
|
132 |
+
<th style="text-align:center">WER (%) ↓</th>
|
133 |
+
<th style="text-align:center">SS ↑</th>
|
134 |
+
</tr>
|
135 |
+
</thead>
|
136 |
+
<tbody>
|
137 |
+
<tr>
|
138 |
+
<td style="text-align:center">Groundtruth</td>
|
139 |
+
<td style="text-align:center">0.972</td>
|
140 |
+
<td style="text-align:center">-</td>
|
141 |
+
<td style="text-align:center">2.156</td>
|
142 |
+
<td style="text-align:center">-</td>
|
143 |
+
</tr>
|
144 |
+
<tr>
|
145 |
+
<td style="text-align:center">CosyVoice</td>
|
146 |
+
<td style="text-align:center">2.857</td>
|
147 |
+
<td style="text-align:center"><strong>0.849</strong></td>
|
148 |
+
<td style="text-align:center">4.519</td>
|
149 |
+
<td style="text-align:center"><strong>0.807</strong></td>
|
150 |
+
</tr>
|
151 |
+
<tr>
|
152 |
+
<td style="text-align:center">Step-Audio-TTS-3B</td>
|
153 |
+
<td style="text-align:center"><strong>2.192</strong></td>
|
154 |
+
<td style="text-align:center">0.784</td>
|
155 |
+
<td style="text-align:center"><strong>3.585</strong></td>
|
156 |
+
<td style="text-align:center">0.742</td>
|
157 |
+
</tr>
|
158 |
+
</tbody>
|
159 |
+
</table>
|
160 |
|
161 |
+
# More information
|
162 |
For more information, please refer to our repository: [Step-Audio](https://github.com/stepfun-ai/Step-Audio).
|