--- base_model: google/gemma-2b library_name: peft license: gemma metrics: - accuracy tags: - trl - reward-trainer - generated_from_trainer model-index: - name: 0721_211205-google-gemma-2b results: [] --- [Visualize in Weights & Biases](https://wandb.ai/6-5940/huggingface/runs/d8hg2z9x) # 0721_211205-google-gemma-2b This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0008 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1742 | 5.0 | 5 | 0.3139 | 1.0 | | 0.101 | 10.0 | 10 | 0.1813 | 1.0 | | 0.0568 | 15.0 | 15 | 0.0998 | 1.0 | | 0.0294 | 20.0 | 20 | 0.0514 | 1.0 | | 0.0145 | 25.0 | 25 | 0.0252 | 1.0 | | 0.0071 | 30.0 | 30 | 0.0127 | 1.0 | | 0.0039 | 35.0 | 35 | 0.0070 | 1.0 | | 0.0024 | 40.0 | 40 | 0.0042 | 1.0 | | 0.0016 | 45.0 | 45 | 0.0028 | 1.0 | | 0.0011 | 50.0 | 50 | 0.0021 | 1.0 | | 0.0009 | 55.0 | 55 | 0.0016 | 1.0 | | 0.0007 | 60.0 | 60 | 0.0014 | 1.0 | | 0.0006 | 65.0 | 65 | 0.0012 | 1.0 | | 0.0005 | 70.0 | 70 | 0.0011 | 1.0 | | 0.0005 | 75.0 | 75 | 0.0010 | 1.0 | | 0.0005 | 80.0 | 80 | 0.0009 | 1.0 | | 0.0005 | 85.0 | 85 | 0.0009 | 1.0 | | 0.0004 | 90.0 | 90 | 0.0009 | 1.0 | | 0.0004 | 95.0 | 95 | 0.0008 | 1.0 | | 0.0004 | 100.0 | 100 | 0.0008 | 1.0 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1