Steven Liu commited on
Commit
a68e896
·
1 Parent(s): c61955e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - summarization
5
+ - generated_from_trainer
6
+ datasets:
7
+ - billsum
8
+ metrics:
9
+ - rouge
10
+ model-index:
11
+ - name: t5-small-finetuned-billsum-ca_test
12
+ results:
13
+ - task:
14
+ name: Sequence-to-sequence Language Modeling
15
+ type: text2text-generation
16
+ dataset:
17
+ name: billsum
18
+ type: billsum
19
+ args: default
20
+ metrics:
21
+ - name: Rouge1
22
+ type: rouge
23
+ value: 52.2582
24
+ ---
25
+
26
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
27
+ should probably proofread and complete it, then remove this comment. -->
28
+
29
+ # t5-small-finetuned-billsum-ca_test
30
+
31
+ This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset.
32
+ It achieves the following results on the evaluation set:
33
+ - Loss: 1.5234
34
+ - Rouge1: 52.2582
35
+ - Rouge2: 34.8162
36
+ - Rougel: 50.5491
37
+ - Rougelsum: 50.6121
38
+ - Gen Len: 18.996
39
+
40
+ ## Model description
41
+
42
+ More information needed
43
+
44
+ ## Intended uses & limitations
45
+
46
+ More information needed
47
+
48
+ ## Training and evaluation data
49
+
50
+ More information needed
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 2e-05
58
+ - train_batch_size: 2
59
+ - eval_batch_size: 2
60
+ - seed: 42
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - num_epochs: 4
64
+ - mixed_precision_training: Native AMP
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
69
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
70
+ | No log | 1.0 | 495 | 1.8113 | 58.4024 | 41.7432 | 56.9521 | 57.0516 | 18.9597 |
71
+ | 2.709 | 2.0 | 990 | 1.6230 | 47.7769 | 32.1777 | 46.0344 | 46.046 | 18.996 |
72
+ | 1.9323 | 3.0 | 1485 | 1.5459 | 51.2371 | 33.8242 | 49.4532 | 49.5038 | 18.996 |
73
+ | 1.7842 | 4.0 | 1980 | 1.5234 | 52.2582 | 34.8162 | 50.5491 | 50.6121 | 18.996 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.12.2
79
+ - Pytorch 1.9.0+cu111
80
+ - Datasets 1.14.0
81
+ - Tokenizers 0.10.3