rufimelo commited on
Commit
858c210
·
1 Parent(s): 835a355

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -68
README.md CHANGED
@@ -1,42 +1,34 @@
1
  ---
2
- pipeline_tag: sentence-similarity
 
 
3
  tags:
4
  - sentence-transformers
5
- - feature-extraction
6
- - sentence-similarity
7
  - transformers
8
  ---
9
 
10
- # {MODEL_NAME}
11
-
12
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
 
13
 
14
- <!--- Describe your model here -->
15
 
16
- ## Usage (Sentence-Transformers)
17
 
 
18
  Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
19
-
20
  ```
21
  pip install -U sentence-transformers
22
  ```
23
-
24
  Then you can use the model like this:
25
-
26
  ```python
27
  from sentence_transformers import SentenceTransformer
28
- sentences = ["This is an example sentence", "Each sentence is converted"]
29
 
30
- model = SentenceTransformer('{MODEL_NAME}')
31
  embeddings = model.encode(sentences)
32
  print(embeddings)
33
  ```
34
-
35
-
36
-
37
  ## Usage (HuggingFace Transformers)
38
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
39
-
40
  ```python
41
  from transformers import AutoTokenizer, AutoModel
42
  import torch
@@ -48,13 +40,12 @@ def mean_pooling(model_output, attention_mask):
48
  input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
49
  return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
50
 
51
-
52
  # Sentences we want sentence embeddings for
53
  sentences = ['This is an example sentence', 'Each sentence is converted']
54
 
55
  # Load model from HuggingFace Hub
56
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
57
- model = AutoModel.from_pretrained('{MODEL_NAME}')
58
 
59
  # Tokenize sentences
60
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
@@ -62,67 +53,60 @@ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tenso
62
  # Compute token embeddings
63
  with torch.no_grad():
64
  model_output = model(**encoded_input)
65
-
66
  # Perform pooling. In this case, mean pooling.
67
  sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
68
-
69
  print("Sentence embeddings:")
70
  print(sentence_embeddings)
71
  ```
72
 
73
 
74
-
75
- ## Evaluation Results
76
-
77
- <!--- Describe how your model was evaluated -->
78
-
79
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
80
-
81
-
82
- ## Training
83
- The model was trained with the parameters:
84
-
85
- **DataLoader**:
86
-
87
- `torch.utils.data.dataloader.DataLoader` of length 25000 with parameters:
88
  ```
89
- {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
 
 
 
90
  ```
 
91
 
92
- **Loss**:
93
-
94
- `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
95
- ```
96
- {'scale': 20.0, 'similarity_fct': 'cos_sim'}
97
- ```
98
 
99
- Parameters of the fit()-Method:
100
- ```
101
- {
102
- "epochs": 1,
103
- "evaluation_steps": 100,
104
- "evaluator": "__main__.LossEvaluator",
105
- "max_grad_norm": 1,
106
- "optimizer_class": "<class 'transformers.optimization.AdamW'>",
107
- "optimizer_params": {
108
- "lr": 1e-05
109
- },
110
- "scheduler": "WarmupLinear",
111
- "steps_per_epoch": null,
112
- "warmup_steps": 0,
113
- "weight_decay": 0.01
114
  }
115
- ```
116
 
 
 
 
 
 
 
 
 
117
 
118
- ## Full Model Architecture
119
- ```
120
- SentenceTransformer(
121
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
122
- (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
123
- )
124
- ```
125
 
126
- ## Citing & Authors
 
 
 
 
 
 
 
 
 
 
 
 
 
127
 
128
- <!--- Describe where people can find more information -->
 
1
  ---
2
+ language:
3
+ - pt
4
+ thumbnail: "Portuguese BERT for the Legal Domain"
5
  tags:
6
  - sentence-transformers
 
 
7
  - transformers
8
  ---
9
 
10
+ # stjiris/bert-large-portuguese-cased-legal-tsdae (Legal BERTimbau)
 
11
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
12
+ stjiris/bert-large-portuguese-cased-legal-tsdae derives from [BERTimbau](https://huggingface.co/neuralmind/bert-large-portuguese-cased) large.
13
 
14
+ It was trained using the TSDAE technique with a learning rate 1e-5 [Legal Sentences from +-30000 documents](https://huggingface.co/datasets/stjiris/portuguese-legal-sentences-v1.0) 15k training steps (best performance for our semantic search system implementation)
15
 
 
16
 
17
+ ## Usage (Sentence-Transformers)
18
  Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
 
19
  ```
20
  pip install -U sentence-transformers
21
  ```
 
22
  Then you can use the model like this:
 
23
  ```python
24
  from sentence_transformers import SentenceTransformer
25
+ sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]
26
 
27
+ model = SentenceTransformer('stjiris/bert-large-portuguese-cased-legal-tsdae')
28
  embeddings = model.encode(sentences)
29
  print(embeddings)
30
  ```
 
 
 
31
  ## Usage (HuggingFace Transformers)
 
 
32
  ```python
33
  from transformers import AutoTokenizer, AutoModel
34
  import torch
 
40
  input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
41
  return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
42
 
 
43
  # Sentences we want sentence embeddings for
44
  sentences = ['This is an example sentence', 'Each sentence is converted']
45
 
46
  # Load model from HuggingFace Hub
47
+ tokenizer = AutoTokenizer.from_pretrained('stjiris/bert-large-portuguese-cased-legal-tsdae')
48
+ model = AutoModel.from_pretrained('stjiris/bert-large-portuguese-cased-legal-tsdae')
49
 
50
  # Tokenize sentences
51
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
53
  # Compute token embeddings
54
  with torch.no_grad():
55
  model_output = model(**encoded_input)
 
56
  # Perform pooling. In this case, mean pooling.
57
  sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
 
58
  print("Sentence embeddings:")
59
  print(sentence_embeddings)
60
  ```
61
 
62
 
63
+ ## Full Model Architecture
 
 
 
 
 
 
 
 
 
 
 
 
 
64
  ```
65
+ SentenceTransformer(
66
+ (0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: BertModel
67
+ (1): Pooling({'word_embedding_dimension': 1028, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
68
+ )
69
  ```
70
+ ## Citing & Authors
71
 
72
+ If you use this work, please cite:
 
 
 
 
 
73
 
74
+ ```bibtex
75
+ @inproceedings{MeloSemantic,
76
+ author = {Melo, Rui and Santos, Professor Pedro Alexandre and Dias, Professor Jo{\~ a}o},
77
+ title = {A {Semantic} {Search} {System} for {Supremo} {Tribunal} de {Justi}{\c c}a},
 
 
 
 
 
 
 
 
 
 
 
78
  }
 
79
 
80
+ @inproceedings{souza2020bertimbau,
81
+ author = {F{\'a}bio Souza and
82
+ Rodrigo Nogueira and
83
+ Roberto Lotufo},
84
+ title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
85
+ booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
86
+ year = {2020}
87
+ }
88
 
89
+ @inproceedings{fonseca2016assin,
90
+ title={ASSIN: Avaliacao de similaridade semantica e inferencia textual},
91
+ author={Fonseca, E and Santos, L and Criscuolo, Marcelo and Aluisio, S},
92
+ booktitle={Computational Processing of the Portuguese Language-12th International Conference, Tomar, Portugal},
93
+ pages={13--15},
94
+ year={2016}
95
+ }
96
 
97
+ @inproceedings{real2020assin,
98
+ title={The assin 2 shared task: a quick overview},
99
+ author={Real, Livy and Fonseca, Erick and Oliveira, Hugo Goncalo},
100
+ booktitle={International Conference on Computational Processing of the Portuguese Language},
101
+ pages={406--412},
102
+ year={2020},
103
+ organization={Springer}
104
+ }
105
+ @InProceedings{huggingface:dataset:stsb_multi_mt,
106
+ title = {Machine translated multilingual STS benchmark dataset.},
107
+ author={Philip May},
108
+ year={2021},
109
+ url={https://github.com/PhilipMay/stsb-multi-mt}
110
+ }
111
 
112
+ ```