Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 266.98 +/- 23.11
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7d7ae92790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7d7ae92820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7d7ae928b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7d7ae92940>", "_build": "<function ActorCriticPolicy._build at 0x7f7d7ae929d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7d7ae92a60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7d7ae92af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7d7ae92b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7d7ae92c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7d7ae92ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7d7ae92d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7d7ae92dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7d7ae91f40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678823025922057675, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAICurD06c7U/BMTMPnMVdL56/Qc+hANEPgAAAAAAAAAADXCmveldqD/ALVW++yYGvygVBb4jHXC8AAAAAAAAAAAA8Lg6135IPzpbWLxlKNO+Uad6Pfqf0b0AAAAAAAAAAJpJjD3vgpU/pv/uPR9K9r56X9M9JIEXvQAAAAAAAAAAQDPSvT6yiD6irbM93Esovs2V1jzW9pQ7AAAAAAAAAABmAr+74ZiIuvnWALXvlnmvPqWcOpaDZzQAAIA/AACAP1omyL1sdsO7QmklPdtHET2RhiI9vb/uvQAAgD8AAIA/JnX4vXRv4j5TfqA9XJ6SvnWsb7zinLE8AAAAAAAAAACOEca+NM5MP+qaob3QKQm/CRipvtvBHD4AAAAAAAAAAPoMk74+wt4+o31gPnkAnr4b9hq9RbY+PQAAAAAAAAAAc6KaPa61hbqEtYY6XvtgNYNpP7s205y5AACAPwAAAACAIMs9hfrOux6lcbyqL4c88p0uvcgDZT0AAAAAAACAP80h3Tyqgao/YxPjPpe+FL/4uAq8Av9pPAAAAAAAAAAAzVYwPD7ilj1ZqoS8vC1MvkTJmLz2HKm8AAAAAAAAAACzz1U+Tn77vKJBtLqFeUw5E0lbvntp9TkAAIA/AACAP8apGT6M9gc+ZQoYvcA7Lb6tMjO8PeHyPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILzArFGkCc0CUhpRSlIwBbJRNQAGMAXSUR0CZwEUrTYukdX2UKGgGaAloD0MIeZRKeAJxcECUhpRSlGgVTRUBaBZHQJnBU+FDfFd1fZQoaAZoCWgPQwhcHQBxV4lvQJSGlFKUaBVNCgFoFkdAmcPcSTQmeHV9lChoBmgJaA9DCM2VQbWBi3BAlIaUUpRoFU0EAWgWR0CZxBSFXaJzdX2UKGgGaAloD0MIR450BobEcECUhpRSlGgVTRIBaBZHQJnEYbBGhEl1fZQoaAZoCWgPQwghkEscudJwQJSGlFKUaBVL/GgWR0CZxPHQQcxTdX2UKGgGaAloD0MIOs5twv2zcUCUhpRSlGgVTTYBaBZHQJnFMMWoFV11fZQoaAZoCWgPQwhoHyv47VhtQJSGlFKUaBVNIgFoFkdAmcYMb3oLX3V9lChoBmgJaA9DCAFNhA2PpnBAlIaUUpRoFU0MAWgWR0CZxjavA44qdX2UKGgGaAloD0MIzox+NJx7cECUhpRSlGgVTWMBaBZHQJnGjsLORkp1fZQoaAZoCWgPQwjs+gW74cRwQJSGlFKUaBVNIgFoFkdAmccSKrJbMXV9lChoBmgJaA9DCOwUqwbhCnJAlIaUUpRoFU1LAWgWR0CZx6yt3fQ8dX2UKGgGaAloD0MIJLcm3ZYNbUCUhpRSlGgVTREBaBZHQJnHsOCoS+R1fZQoaAZoCWgPQwhbmfBL/epuQJSGlFKUaBVNVgFoFkdAmcicI/qxDHV9lChoBmgJaA9DCC9q96tAO3FAlIaUUpRoFU0HA2gWR0CZyZ8rI5o5dX2UKGgGaAloD0MIIF9CBQcjckCUhpRSlGgVTV8BaBZHQJnJ4+UyHmB1fZQoaAZoCWgPQwj6fmq8tK9wQJSGlFKUaBVNMgFoFkdAmcoAjY7JXHV9lChoBmgJaA9DCOvHJvnRfXFAlIaUUpRoFUvjaBZHQJnKU3Mpw0h1fZQoaAZoCWgPQwh3Loz0IuhtQJSGlFKUaBVL/WgWR0CZy3dgv115dX2UKGgGaAloD0MIVg3C3K78ckCUhpRSlGgVS+doFkdAmcz1GLDQ7nV9lChoBmgJaA9DCAJmvoOfOm9AlIaUUpRoFU0gAWgWR0CZzR/Pw/gSdX2UKGgGaAloD0MIYRqGj0iCcECUhpRSlGgVTQcBaBZHQJnNc6V+qip1fZQoaAZoCWgPQwg5mE2A4axxQJSGlFKUaBVNVQFoFkdAmc3uyu6mO3V9lChoBmgJaA9DCPWfNT++hnFAlIaUUpRoFU0TAWgWR0CZzgIDoyKvdX2UKGgGaAloD0MItCCU93FlcECUhpRSlGgVTUQBaBZHQJnOb84xUNt1fZQoaAZoCWgPQwiOy7ipQTVwQJSGlFKUaBVNLgFoFkdAmc94qG1x83V9lChoBmgJaA9DCLWM1HuqmW5AlIaUUpRoFU0sAWgWR0CZ0AT/Q0GedX2UKGgGaAloD0MIscBXdOtyckCUhpRSlGgVTRcBaBZHQJnQbai9Iwx1fZQoaAZoCWgPQwgx7gbR2jhyQJSGlFKUaBVL9GgWR0CZ0L0Nz8xcdX2UKGgGaAloD0MIM95Weu2ncECUhpRSlGgVTRsBaBZHQJnRjXcxj8V1fZQoaAZoCWgPQwgkYkokUXpxQJSGlFKUaBVNZAFoFkdAmdGIQBgeBHV9lChoBmgJaA9DCLSu0XKgxm1AlIaUUpRoFU0cAWgWR0CZ0ebgTAWSdX2UKGgGaAloD0MISkIibWOYcECUhpRSlGgVTRcBaBZHQJnSJOvdM0x1fZQoaAZoCWgPQwj9Ma1N4/9hQJSGlFKUaBVN6ANoFkdAmdJjs6aLGnV9lChoBmgJaA9DCDhNnx0w0HFAlIaUUpRoFU0UAWgWR0CZ0x5VwPy1dX2UKGgGaAloD0MIWTLH8q6BbUCUhpRSlGgVS/JoFkdAmdOVMqSX+nV9lChoBmgJaA9DCHdM3ZXdO3FAlIaUUpRoFUv2aBZHQJnT7ndO6/Z1fZQoaAZoCWgPQwgJM23/igtxQJSGlFKUaBVL+GgWR0CZ1FqvvBrOdX2UKGgGaAloD0MIWYejqzRRcECUhpRSlGgVTQ0BaBZHQJnU86aLGaR1fZQoaAZoCWgPQwiB64oZYUlwQJSGlFKUaBVNPgFoFkdAmdVa508vEnV9lChoBmgJaA9DCGXh62vdwW5AlIaUUpRoFU0HAWgWR0CZ15CRfWtmdX2UKGgGaAloD0MId6IkJBLccECUhpRSlGgVS+5oFkdAme9V14gRsnV9lChoBmgJaA9DCA9iZwpdy3BAlIaUUpRoFU1FAWgWR0CZ79SYw7DEdX2UKGgGaAloD0MIR1hUxClTckCUhpRSlGgVTTkBaBZHQJnwMQ176YV1fZQoaAZoCWgPQwiEnWLVYB9xQJSGlFKUaBVNBwFoFkdAmfB+gDifhHV9lChoBmgJaA9DCIY3a/A+6XFAlIaUUpRoFU01AWgWR0CZ8KtNi6QOdX2UKGgGaAloD0MISddMvlnLb0CUhpRSlGgVTQoBaBZHQJnxjRMN+b51fZQoaAZoCWgPQwhA+5EiMgJwQJSGlFKUaBVL7WgWR0CZ8gCMPz4DdX2UKGgGaAloD0MI7dgIxCuCcECUhpRSlGgVTScBaBZHQJnyX2ZiNKh1fZQoaAZoCWgPQwgxzXSvE8RwQJSGlFKUaBVNIgFoFkdAmfLt21UlzHV9lChoBmgJaA9DCN+oFabviG9AlIaUUpRoFU0XAWgWR0CZ9BtWdVebdX2UKGgGaAloD0MI8zy4O2uNbkCUhpRSlGgVS/1oFkdAmfQ6NuLrHHV9lChoBmgJaA9DCMmOjUA88m5AlIaUUpRoFU0rAWgWR0CZ9PYixFAndX2UKGgGaAloD0MIgBDJkOMMbkCUhpRSlGgVTQACaBZHQJn0/LgXMyJ1fZQoaAZoCWgPQwjj/E0ohOtxQJSGlFKUaBVNAQFoFkdAmfVG1UlzEXV9lChoBmgJaA9DCHpwd9ZutnBAlIaUUpRoFU00AWgWR0CZ9gPBzmwJdX2UKGgGaAloD0MIROBIoIGvc0CUhpRSlGgVS/toFkdAmfcvBBRht3V9lChoBmgJaA9DCDUqcLINeW5AlIaUUpRoFU0AAWgWR0CZ9y3S8an8dX2UKGgGaAloD0MIx549l+mmckCUhpRSlGgVS/FoFkdAmfeyxFAmiXV9lChoBmgJaA9DCJon1xTIz3BAlIaUUpRoFU0eAWgWR0CZ+KHmA9V4dX2UKGgGaAloD0MItmeWBGhlcUCUhpRSlGgVS+JoFkdAmfjTwH7gsXV9lChoBmgJaA9DCOaTFcNVt29AlIaUUpRoFUv7aBZHQJn44utfXwt1fZQoaAZoCWgPQwhViEfiZY9yQJSGlFKUaBVNMAFoFkdAmfjrDdgv13V9lChoBmgJaA9DCHS366Xph3BAlIaUUpRoFUv4aBZHQJn5B3Qla8p1fZQoaAZoCWgPQwioV8oyhAxyQJSGlFKUaBVNDgFoFkdAmfkRFy7wrnV9lChoBmgJaA9DCKLvbmWJk29AlIaUUpRoFU09AWgWR0CZ+YBltj0+dX2UKGgGaAloD0MItdyZCQYVb0CUhpRSlGgVS/ZoFkdAmfrwSJ0nxHV9lChoBmgJaA9DCPImv0Wn53FAlIaUUpRoFU0kAWgWR0CZ+zy31BdEdX2UKGgGaAloD0MILGFtjJ03cUCUhpRSlGgVTQIBaBZHQJn7RLCemN11fZQoaAZoCWgPQwg8F0Z6UTtvQJSGlFKUaBVNBQFoFkdAmfury1/lQ3V9lChoBmgJaA9DCNk+5C1X625AlIaUUpRoFU1OAWgWR0CZ/F9ZzPrwdX2UKGgGaAloD0MI3iHFAAmmcUCUhpRSlGgVS/BoFkdAmf0WwJPZZnV9lChoBmgJaA9DCEVmLnA5MXFAlIaUUpRoFUv3aBZHQJn9wh/y5I91fZQoaAZoCWgPQwjrNT0oqKdyQJSGlFKUaBVL9WgWR0CZ/sqQA+6idX2UKGgGaAloD0MIZmZmZiaWcECUhpRSlGgVS/poFkdAmf8DjFQ2uXV9lChoBmgJaA9DCKhXyjIEzXBAlIaUUpRoFUvjaBZHQJn/KKYRdyF1fZQoaAZoCWgPQwhEatrFNINvQJSGlFKUaBVNBQFoFkdAmf9Vsk6cRXV9lChoBmgJaA9DCN7H0RzZIHJAlIaUUpRoFU0LAWgWR0CZ/5jCYTkAdX2UKGgGaAloD0MIzXhb6bUUc0CUhpRSlGgVTRgBaBZHQJn/8yqMm4R1fZQoaAZoCWgPQwg4TZ8dsGRyQJSGlFKUaBVNPQFoFkdAmgBxfBvaUXV9lChoBmgJaA9DCDj4wmRqjHBAlIaUUpRoFUv2aBZHQJoBeu4gA6x1fZQoaAZoCWgPQwgANiBC3NpwQJSGlFKUaBVL7mgWR0CaAbxdY4hmdX2UKGgGaAloD0MIYkok0YuWcUCUhpRSlGgVTRgBaBZHQJoCZ2FFlTZ1fZQoaAZoCWgPQwg/qmG/5xVwQJSGlFKUaBVNLwFoFkdAmgKt/nW8RXV9lChoBmgJaA9DCI6yfjMxRnFAlIaUUpRoFU0WAWgWR0CaA5eD3/PxdX2UKGgGaAloD0MIsmSO5d3Wb0CUhpRSlGgVTQkBaBZHQJoECUmlZYB1fZQoaAZoCWgPQwjFdYwrbvpyQJSGlFKUaBVNBgJoFkdAmgRewPiDNHV9lChoBmgJaA9DCNuGURA8rG5AlIaUUpRoFU0SAWgWR0CaBPC2tuDSdX2UKGgGaAloD0MIAhB39SoRckCUhpRSlGgVTQsBaBZHQJoGFKpT/AF1fZQoaAZoCWgPQwj0UNuGkaFwQJSGlFKUaBVL+2gWR0CaBsZAY51edX2UKGgGaAloD0MIb/CFydSCbkCUhpRSlGgVTR0BaBZHQJoG04p+c6N1fZQoaAZoCWgPQwhgH526ciJyQJSGlFKUaBVL6GgWR0CaCA+rU9ZBdX2UKGgGaAloD0MIcJaS5eTtcUCUhpRSlGgVTTUBaBZHQJoIIYLsrup1fZQoaAZoCWgPQwiL+bmhKWlwQJSGlFKUaBVNaQFoFkdAmgjMpgCwKXV9lChoBmgJaA9DCMHG9e96znFAlIaUUpRoFU1jAWgWR0CaCTBz3h4udX2UKGgGaAloD0MIk6tY/CZncECUhpRSlGgVTREBaBZHQJoJl85S3sp1fZQoaAZoCWgPQwg34slu5uhwQJSGlFKUaBVNHgFoFkdAmgqgW8AaN3V9lChoBmgJaA9DCNU+HY/ZSnJAlIaUUpRoFU0XAWgWR0CaCrZeRgZ1dX2UKGgGaAloD0MItW/ur17bcECUhpRSlGgVS+hoFkdAmgshAWzninV9lChoBmgJaA9DCKoLeJkh7nBAlIaUUpRoFU0TAWgWR0CaC3dC3PRidWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34079b9127b78e13ec0d2eebde481dbc0826d13f0df71eeed5712579572ef51f
|
3 |
+
size 147393
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7d7ae92790>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7d7ae92820>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7d7ae928b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7d7ae92940>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7d7ae929d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7d7ae92a60>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7d7ae92af0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7d7ae92b80>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7d7ae92c10>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7d7ae92ca0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7d7ae92d30>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7d7ae92dc0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f7d7ae91f40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1678823025922057675,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAICurD06c7U/BMTMPnMVdL56/Qc+hANEPgAAAAAAAAAADXCmveldqD/ALVW++yYGvygVBb4jHXC8AAAAAAAAAAAA8Lg6135IPzpbWLxlKNO+Uad6Pfqf0b0AAAAAAAAAAJpJjD3vgpU/pv/uPR9K9r56X9M9JIEXvQAAAAAAAAAAQDPSvT6yiD6irbM93Esovs2V1jzW9pQ7AAAAAAAAAABmAr+74ZiIuvnWALXvlnmvPqWcOpaDZzQAAIA/AACAP1omyL1sdsO7QmklPdtHET2RhiI9vb/uvQAAgD8AAIA/JnX4vXRv4j5TfqA9XJ6SvnWsb7zinLE8AAAAAAAAAACOEca+NM5MP+qaob3QKQm/CRipvtvBHD4AAAAAAAAAAPoMk74+wt4+o31gPnkAnr4b9hq9RbY+PQAAAAAAAAAAc6KaPa61hbqEtYY6XvtgNYNpP7s205y5AACAPwAAAACAIMs9hfrOux6lcbyqL4c88p0uvcgDZT0AAAAAAACAP80h3Tyqgao/YxPjPpe+FL/4uAq8Av9pPAAAAAAAAAAAzVYwPD7ilj1ZqoS8vC1MvkTJmLz2HKm8AAAAAAAAAACzz1U+Tn77vKJBtLqFeUw5E0lbvntp9TkAAIA/AACAP8apGT6M9gc+ZQoYvcA7Lb6tMjO8PeHyPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVZhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILzArFGkCc0CUhpRSlIwBbJRNQAGMAXSUR0CZwEUrTYukdX2UKGgGaAloD0MIeZRKeAJxcECUhpRSlGgVTRUBaBZHQJnBU+FDfFd1fZQoaAZoCWgPQwhcHQBxV4lvQJSGlFKUaBVNCgFoFkdAmcPcSTQmeHV9lChoBmgJaA9DCM2VQbWBi3BAlIaUUpRoFU0EAWgWR0CZxBSFXaJzdX2UKGgGaAloD0MIR450BobEcECUhpRSlGgVTRIBaBZHQJnEYbBGhEl1fZQoaAZoCWgPQwghkEscudJwQJSGlFKUaBVL/GgWR0CZxPHQQcxTdX2UKGgGaAloD0MIOs5twv2zcUCUhpRSlGgVTTYBaBZHQJnFMMWoFV11fZQoaAZoCWgPQwhoHyv47VhtQJSGlFKUaBVNIgFoFkdAmcYMb3oLX3V9lChoBmgJaA9DCAFNhA2PpnBAlIaUUpRoFU0MAWgWR0CZxjavA44qdX2UKGgGaAloD0MIzox+NJx7cECUhpRSlGgVTWMBaBZHQJnGjsLORkp1fZQoaAZoCWgPQwjs+gW74cRwQJSGlFKUaBVNIgFoFkdAmccSKrJbMXV9lChoBmgJaA9DCOwUqwbhCnJAlIaUUpRoFU1LAWgWR0CZx6yt3fQ8dX2UKGgGaAloD0MIJLcm3ZYNbUCUhpRSlGgVTREBaBZHQJnHsOCoS+R1fZQoaAZoCWgPQwhbmfBL/epuQJSGlFKUaBVNVgFoFkdAmcicI/qxDHV9lChoBmgJaA9DCC9q96tAO3FAlIaUUpRoFU0HA2gWR0CZyZ8rI5o5dX2UKGgGaAloD0MIIF9CBQcjckCUhpRSlGgVTV8BaBZHQJnJ4+UyHmB1fZQoaAZoCWgPQwj6fmq8tK9wQJSGlFKUaBVNMgFoFkdAmcoAjY7JXHV9lChoBmgJaA9DCOvHJvnRfXFAlIaUUpRoFUvjaBZHQJnKU3Mpw0h1fZQoaAZoCWgPQwh3Loz0IuhtQJSGlFKUaBVL/WgWR0CZy3dgv115dX2UKGgGaAloD0MIVg3C3K78ckCUhpRSlGgVS+doFkdAmcz1GLDQ7nV9lChoBmgJaA9DCAJmvoOfOm9AlIaUUpRoFU0gAWgWR0CZzR/Pw/gSdX2UKGgGaAloD0MIYRqGj0iCcECUhpRSlGgVTQcBaBZHQJnNc6V+qip1fZQoaAZoCWgPQwg5mE2A4axxQJSGlFKUaBVNVQFoFkdAmc3uyu6mO3V9lChoBmgJaA9DCPWfNT++hnFAlIaUUpRoFU0TAWgWR0CZzgIDoyKvdX2UKGgGaAloD0MItCCU93FlcECUhpRSlGgVTUQBaBZHQJnOb84xUNt1fZQoaAZoCWgPQwiOy7ipQTVwQJSGlFKUaBVNLgFoFkdAmc94qG1x83V9lChoBmgJaA9DCLWM1HuqmW5AlIaUUpRoFU0sAWgWR0CZ0AT/Q0GedX2UKGgGaAloD0MIscBXdOtyckCUhpRSlGgVTRcBaBZHQJnQbai9Iwx1fZQoaAZoCWgPQwgx7gbR2jhyQJSGlFKUaBVL9GgWR0CZ0L0Nz8xcdX2UKGgGaAloD0MIM95Weu2ncECUhpRSlGgVTRsBaBZHQJnRjXcxj8V1fZQoaAZoCWgPQwgkYkokUXpxQJSGlFKUaBVNZAFoFkdAmdGIQBgeBHV9lChoBmgJaA9DCLSu0XKgxm1AlIaUUpRoFU0cAWgWR0CZ0ebgTAWSdX2UKGgGaAloD0MISkIibWOYcECUhpRSlGgVTRcBaBZHQJnSJOvdM0x1fZQoaAZoCWgPQwj9Ma1N4/9hQJSGlFKUaBVN6ANoFkdAmdJjs6aLGnV9lChoBmgJaA9DCDhNnx0w0HFAlIaUUpRoFU0UAWgWR0CZ0x5VwPy1dX2UKGgGaAloD0MIWTLH8q6BbUCUhpRSlGgVS/JoFkdAmdOVMqSX+nV9lChoBmgJaA9DCHdM3ZXdO3FAlIaUUpRoFUv2aBZHQJnT7ndO6/Z1fZQoaAZoCWgPQwgJM23/igtxQJSGlFKUaBVL+GgWR0CZ1FqvvBrOdX2UKGgGaAloD0MIWYejqzRRcECUhpRSlGgVTQ0BaBZHQJnU86aLGaR1fZQoaAZoCWgPQwiB64oZYUlwQJSGlFKUaBVNPgFoFkdAmdVa508vEnV9lChoBmgJaA9DCGXh62vdwW5AlIaUUpRoFU0HAWgWR0CZ15CRfWtmdX2UKGgGaAloD0MId6IkJBLccECUhpRSlGgVS+5oFkdAme9V14gRsnV9lChoBmgJaA9DCA9iZwpdy3BAlIaUUpRoFU1FAWgWR0CZ79SYw7DEdX2UKGgGaAloD0MIR1hUxClTckCUhpRSlGgVTTkBaBZHQJnwMQ176YV1fZQoaAZoCWgPQwiEnWLVYB9xQJSGlFKUaBVNBwFoFkdAmfB+gDifhHV9lChoBmgJaA9DCIY3a/A+6XFAlIaUUpRoFU01AWgWR0CZ8KtNi6QOdX2UKGgGaAloD0MISddMvlnLb0CUhpRSlGgVTQoBaBZHQJnxjRMN+b51fZQoaAZoCWgPQwhA+5EiMgJwQJSGlFKUaBVL7WgWR0CZ8gCMPz4DdX2UKGgGaAloD0MI7dgIxCuCcECUhpRSlGgVTScBaBZHQJnyX2ZiNKh1fZQoaAZoCWgPQwgxzXSvE8RwQJSGlFKUaBVNIgFoFkdAmfLt21UlzHV9lChoBmgJaA9DCN+oFabviG9AlIaUUpRoFU0XAWgWR0CZ9BtWdVebdX2UKGgGaAloD0MI8zy4O2uNbkCUhpRSlGgVS/1oFkdAmfQ6NuLrHHV9lChoBmgJaA9DCMmOjUA88m5AlIaUUpRoFU0rAWgWR0CZ9PYixFAndX2UKGgGaAloD0MIgBDJkOMMbkCUhpRSlGgVTQACaBZHQJn0/LgXMyJ1fZQoaAZoCWgPQwjj/E0ohOtxQJSGlFKUaBVNAQFoFkdAmfVG1UlzEXV9lChoBmgJaA9DCHpwd9ZutnBAlIaUUpRoFU00AWgWR0CZ9gPBzmwJdX2UKGgGaAloD0MIROBIoIGvc0CUhpRSlGgVS/toFkdAmfcvBBRht3V9lChoBmgJaA9DCDUqcLINeW5AlIaUUpRoFU0AAWgWR0CZ9y3S8an8dX2UKGgGaAloD0MIx549l+mmckCUhpRSlGgVS/FoFkdAmfeyxFAmiXV9lChoBmgJaA9DCJon1xTIz3BAlIaUUpRoFU0eAWgWR0CZ+KHmA9V4dX2UKGgGaAloD0MItmeWBGhlcUCUhpRSlGgVS+JoFkdAmfjTwH7gsXV9lChoBmgJaA9DCOaTFcNVt29AlIaUUpRoFUv7aBZHQJn44utfXwt1fZQoaAZoCWgPQwhViEfiZY9yQJSGlFKUaBVNMAFoFkdAmfjrDdgv13V9lChoBmgJaA9DCHS366Xph3BAlIaUUpRoFUv4aBZHQJn5B3Qla8p1fZQoaAZoCWgPQwioV8oyhAxyQJSGlFKUaBVNDgFoFkdAmfkRFy7wrnV9lChoBmgJaA9DCKLvbmWJk29AlIaUUpRoFU09AWgWR0CZ+YBltj0+dX2UKGgGaAloD0MItdyZCQYVb0CUhpRSlGgVS/ZoFkdAmfrwSJ0nxHV9lChoBmgJaA9DCPImv0Wn53FAlIaUUpRoFU0kAWgWR0CZ+zy31BdEdX2UKGgGaAloD0MILGFtjJ03cUCUhpRSlGgVTQIBaBZHQJn7RLCemN11fZQoaAZoCWgPQwg8F0Z6UTtvQJSGlFKUaBVNBQFoFkdAmfury1/lQ3V9lChoBmgJaA9DCNk+5C1X625AlIaUUpRoFU1OAWgWR0CZ/F9ZzPrwdX2UKGgGaAloD0MI3iHFAAmmcUCUhpRSlGgVS/BoFkdAmf0WwJPZZnV9lChoBmgJaA9DCEVmLnA5MXFAlIaUUpRoFUv3aBZHQJn9wh/y5I91fZQoaAZoCWgPQwjrNT0oqKdyQJSGlFKUaBVL9WgWR0CZ/sqQA+6idX2UKGgGaAloD0MIZmZmZiaWcECUhpRSlGgVS/poFkdAmf8DjFQ2uXV9lChoBmgJaA9DCKhXyjIEzXBAlIaUUpRoFUvjaBZHQJn/KKYRdyF1fZQoaAZoCWgPQwhEatrFNINvQJSGlFKUaBVNBQFoFkdAmf9Vsk6cRXV9lChoBmgJaA9DCN7H0RzZIHJAlIaUUpRoFU0LAWgWR0CZ/5jCYTkAdX2UKGgGaAloD0MIzXhb6bUUc0CUhpRSlGgVTRgBaBZHQJn/8yqMm4R1fZQoaAZoCWgPQwg4TZ8dsGRyQJSGlFKUaBVNPQFoFkdAmgBxfBvaUXV9lChoBmgJaA9DCDj4wmRqjHBAlIaUUpRoFUv2aBZHQJoBeu4gA6x1fZQoaAZoCWgPQwgANiBC3NpwQJSGlFKUaBVL7mgWR0CaAbxdY4hmdX2UKGgGaAloD0MIYkok0YuWcUCUhpRSlGgVTRgBaBZHQJoCZ2FFlTZ1fZQoaAZoCWgPQwg/qmG/5xVwQJSGlFKUaBVNLwFoFkdAmgKt/nW8RXV9lChoBmgJaA9DCI6yfjMxRnFAlIaUUpRoFU0WAWgWR0CaA5eD3/PxdX2UKGgGaAloD0MIsmSO5d3Wb0CUhpRSlGgVTQkBaBZHQJoECUmlZYB1fZQoaAZoCWgPQwjFdYwrbvpyQJSGlFKUaBVNBgJoFkdAmgRewPiDNHV9lChoBmgJaA9DCNuGURA8rG5AlIaUUpRoFU0SAWgWR0CaBPC2tuDSdX2UKGgGaAloD0MIAhB39SoRckCUhpRSlGgVTQsBaBZHQJoGFKpT/AF1fZQoaAZoCWgPQwj0UNuGkaFwQJSGlFKUaBVL+2gWR0CaBsZAY51edX2UKGgGaAloD0MIb/CFydSCbkCUhpRSlGgVTR0BaBZHQJoG04p+c6N1fZQoaAZoCWgPQwhgH526ciJyQJSGlFKUaBVL6GgWR0CaCA+rU9ZBdX2UKGgGaAloD0MIcJaS5eTtcUCUhpRSlGgVTTUBaBZHQJoIIYLsrup1fZQoaAZoCWgPQwiL+bmhKWlwQJSGlFKUaBVNaQFoFkdAmgjMpgCwKXV9lChoBmgJaA9DCMHG9e96znFAlIaUUpRoFU1jAWgWR0CaCTBz3h4udX2UKGgGaAloD0MIk6tY/CZncECUhpRSlGgVTREBaBZHQJoJl85S3sp1fZQoaAZoCWgPQwg34slu5uhwQJSGlFKUaBVNHgFoFkdAmgqgW8AaN3V9lChoBmgJaA9DCNU+HY/ZSnJAlIaUUpRoFU0XAWgWR0CaCrZeRgZ1dX2UKGgGaAloD0MItW/ur17bcECUhpRSlGgVS+hoFkdAmgshAWzninV9lChoBmgJaA9DCKoLeJkh7nBAlIaUUpRoFU0TAWgWR0CaC3dC3PRidWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dfd854e29d12280c9238708940c5c82e55a24cc837d105dc812bd6c27a1e37a7
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be81429af0fb54a63c1708fc2b7deb40af29e2c51ebe5ea2232dfa7f58d75a87
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (198 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 266.98243579705684, "std_reward": 23.113700797869065, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-14T20:08:51.990889"}
|