student-abdullah commited on
Commit
0b42637
·
verified ·
1 Parent(s): 0637b0e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +34 -5
README.md CHANGED
@@ -1,22 +1,51 @@
1
  ---
2
- base_model: unsloth/meta-llama-3.1-8b-bnb-4bit
3
  language:
4
  - en
5
  license: apache-2.0
6
  tags:
7
  - text-generation-inference
8
  - transformers
 
 
9
  - unsloth
10
  - llama
11
  - gguf
 
 
12
  ---
13
 
14
- # Uploaded model
 
15
 
16
  - **Developed by:** student-abdullah
17
  - **License:** apache-2.0
18
- - **Finetuned from model :** unsloth/meta-llama-3.1-8b-bnb-4bit
19
-
20
- This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
 
 
 
22
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model: meta-llama/Meta-Llama-3.1-8B
3
  language:
4
  - en
5
  license: apache-2.0
6
  tags:
7
  - text-generation-inference
8
  - transformers
9
+ - torch
10
+ - trl
11
  - unsloth
12
  - llama
13
  - gguf
14
+ datasets:
15
+ - student-abdullah/BigPharma_Generic_Q-A_Format_Augemented_Dataset
16
  ---
17
 
18
+
19
+ # Uploaded model
20
 
21
  - **Developed by:** student-abdullah
22
  - **License:** apache-2.0
23
+ - **Finetuned from model:** meta-llama/Meta-Llama-3.1-8B
24
+ - **Created on:** 25th September, 2024
 
25
 
26
+ ---
27
+ # Acknowledgement
28
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
29
+
30
+ ---
31
+ # Model Description
32
+ This model is fine-tuned from the meta-llama/Meta-Llama-3.1-8B base model to enhance its capabilities in generating relevant and accurate responses related to generic medications under the PMBJP scheme. The fine-tuning process included the following hyperparameters:
33
+
34
+ - Fine Tuning Template: Llama 3.1 Q&A
35
+ - Max Tokens: 512
36
+ - LoRA Alpha: 10
37
+ - LoRA Rank (r): 128
38
+ - Learning rate: 2e-4
39
+ - Gradient Accumulation Steps: 32
40
+ - Batch Size: 4
41
+ - Qunatization: 16 bits
42
+
43
+ ---
44
+ # Model Quantitative Performace
45
+ - Training Quantitative Loss: 0.1676 (at final 160th epoch)
46
+
47
+ ---
48
+ # Limitations
49
+ - Token Limitations: With a max token limit of 512, the model might not handle very long queries or contexts effectively.
50
+ - Training Data Limitations: The model’s performance is contingent on the quality and coverage of the fine-tuning dataset, which may affect its generalizability to different contexts or medications not covered in the dataset.
51
+ - Potential Biases: As with any model fine-tuned on specific data, there may be biases based on the dataset used for training.