File size: 3,891 Bytes
6222c09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e1defe
 
 
 
 
6222c09
 
 
6ea82ab
6222c09
 
 
 
 
 
25e884b
6222c09
7d4b6be
6222c09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2598b66
38aa0f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2598b66
6222c09
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
base_model: Qwen/Qwen2.5-Coder-0.5B
datasets: None
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- torch
- trl
- unsloth
- llama
- gguf
---


# Uploaded model

- **Developed by:** student-abdullah
- **License:** apache-2.0
- **Quantized from model:** Qwen2.5-Coder-0.5B
- **Created on:** 06th July, 2025

---
# Acknowledgement
<div style="display: flex; gap: 10px; align-items: center;">
  <img src="https://colab.research.google.com/img/colab_favicon_256px.png" width="200"/>
  <img src="https://upload.wikimedia.org/wikipedia/commons/thumb/e/ef/ChatGPT-Logo.svg/2048px-ChatGPT-Logo.svg.png" width="140"/>
  <img src="https://compareaimodels.com/content/images/2024/08/qwen-square.svg" width="200"/>
</div>

---
# Quantization Description
This model is quantized using *selective quantization* from the Qwen2.5-Coder-0.5B base model to increase its speed while preserving the capabilities in generating relevant and accurate responses related python programming.
The quantization method included *32-bit* quantization of the following Layers:
- q_proj
- v_proj
- o_proj
- down_proj
- lm_head

Rest of the remaining layers were quantized to *q3_k_l*

---
# Model Description
| Layer Name                   | Role (Short)                                          | Type           |
| ---------------------------- | ----------------------------------------------------- | -------------- |
| `q_proj`, `k_proj`, `v_proj` | Compute query, key, and value for attention mechanism | Attention Proj |
| `o_proj`                     | Projects attention output back to model hidden size   | Attention Proj |
| `down_proj`                  | Projects MLP output down to hidden size               | MLP            |
| `gate_proj`                  | First part of Gated MLP, controls info flow           | MLP            |
| `up_proj`                    | Expands hidden size in MLP                            | MLP            |
| `lm_head`                    | Final linear layer for logits                         | Output Head    |
| `embed_tokens`               | Token embedding layer                                 | Input Embed    |
| `norm`                       | Final layernorm                                       | Normalization  |
| `*_layernorm`                | Normalize inputs to layers                            | Normalization  |

---
# Model Architect
<pre><code>Qwen2ForCausalLM(
  (model): Qwen2Model(
    (embed_tokens): Embedding(151936, 896, padding_idx=151665)
    (layers): ModuleList(
      (0-23): 24 x Qwen2DecoderLayer(
        (self_attn): Qwen2Attention(
          (q_proj): Linear(in_features=896, out_features=896, bias=True)
          (k_proj): Linear(in_features=896, out_features=128, bias=True)
          (v_proj): Linear(in_features=896, out_features=128, bias=True)
          (o_proj): Linear(in_features=896, out_features=896, bias=False)
          (rotary_emb): LlamaRotaryEmbedding()
        )
        (mlp): Qwen2MLP(
          (gate_proj): Linear(in_features=896, out_features=4864, bias=False)
          (up_proj): Linear(in_features=896, out_features=4864, bias=False)
          (down_proj): Linear(in_features=4864, out_features=896, bias=False)
          (act_fn): SiLU()
        )
        (input_layernorm): Qwen2RMSNorm((896,), eps=1e-06)
        (post_attention_layernorm): Qwen2RMSNorm((896,), eps=1e-06)
      )
    )
    (norm): Qwen2RMSNorm((896,), eps=1e-06)
    (rotary_emb): LlamaRotaryEmbedding()
  )
  (lm_head): Linear(in_features=896, out_features=151936, bias=False)
)</code></pre>

---
# Performance & Limitations
- YET TO BE EXAMINED

---
# Model Performace Evaluation:
- YET TO BE EVALUATED

<p align="center">
  <img src="" width="20%" style="display:inline-block;"/>
  <img src="" width="35%" style="display:inline-block;"/>
  <img src="" width="35%" style="display:inline-block;"/>
</p>