Upload gan_model_load_test.py
Browse files- gan_model_load_test.py +101 -0
gan_model_load_test.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import jittor as jt
|
2 |
+
from jittor import init
|
3 |
+
from jittor import nn
|
4 |
+
|
5 |
+
import argparse
|
6 |
+
import numpy as np
|
7 |
+
import cv2
|
8 |
+
|
9 |
+
jt.flags.use_cuda = 1
|
10 |
+
|
11 |
+
parser = argparse.ArgumentParser()
|
12 |
+
parser.add_argument('--n_epochs', type=int, default=200, help='训练的时期数')
|
13 |
+
parser.add_argument('--batch_size', type=int, default=64, help='批次大小')
|
14 |
+
parser.add_argument('--lr', type=float, default=0.0002, help='学习率')
|
15 |
+
parser.add_argument('--b1', type=float, default=0.5, help='梯度的一阶动量衰减')
|
16 |
+
parser.add_argument('--b2', type=float, default=0.999, help='梯度的一阶动量衰减')
|
17 |
+
parser.add_argument('--n_cpu', type=int, default=8, help='批处理生成期间要使用的 cpu 线程数')
|
18 |
+
parser.add_argument('--latent_dim', type=int, default=100, help='潜在空间的维度')
|
19 |
+
parser.add_argument('--img_size', type=int, default=28, help='每个图像尺寸的大小')
|
20 |
+
parser.add_argument('--channels', type=int, default=1, help='图像通道数')
|
21 |
+
parser.add_argument('--sample_interval', type=int, default=400, help='图像样本之间的间隔')
|
22 |
+
|
23 |
+
opt = parser.parse_args()
|
24 |
+
print(opt)
|
25 |
+
img_shape = (opt.channels, opt.img_size, opt.img_size)
|
26 |
+
|
27 |
+
# 生成器
|
28 |
+
class Generator(nn.Module):
|
29 |
+
|
30 |
+
def __init__(self):
|
31 |
+
super(Generator, self).__init__()
|
32 |
+
|
33 |
+
def block(in_feat, out_feat, normalize=True):
|
34 |
+
layers = [nn.Linear(in_feat, out_feat)]
|
35 |
+
if normalize:
|
36 |
+
layers.append(nn.BatchNorm1d(out_feat, 0.8))
|
37 |
+
layers.append(nn.LeakyReLU(scale=0.2))
|
38 |
+
return layers
|
39 |
+
self.model = nn.Sequential(*block(opt.latent_dim, 128, normalize=False), *block(128, 256), *block(256, 512), *block(512, 1024), nn.Linear(1024, int(np.prod(img_shape))), nn.Tanh())
|
40 |
+
|
41 |
+
def execute(self, z):
|
42 |
+
img = self.model(z)
|
43 |
+
img = img.view((img.shape[0], *img_shape))
|
44 |
+
return img
|
45 |
+
|
46 |
+
# 判别器
|
47 |
+
class Discriminator(nn.Module):
|
48 |
+
|
49 |
+
def __init__(self):
|
50 |
+
super(Discriminator, self).__init__()
|
51 |
+
self.model = nn.Sequential(nn.Linear(int(np.prod(img_shape)), 512), nn.LeakyReLU(scale=0.2), nn.Linear(512, 256), nn.LeakyReLU(scale=0.2), nn.Linear(256, 1), nn.Sigmoid())
|
52 |
+
|
53 |
+
def execute(self, img):
|
54 |
+
img_flat = img.view((img.shape[0], (- 1)))
|
55 |
+
validity = self.model(img_flat)
|
56 |
+
return validity
|
57 |
+
|
58 |
+
def deal_image(img, path=None, nrow=None):
|
59 |
+
N,C,W,H = img.shape# (25, 1, 28, 28)
|
60 |
+
'''
|
61 |
+
[-1,700,28] , img2的形状(1,700,28)
|
62 |
+
img[0][0][0] = img2[0][0]
|
63 |
+
img2:[
|
64 |
+
[1*28]
|
65 |
+
......(一共700个)
|
66 |
+
](1,700,28)
|
67 |
+
'''
|
68 |
+
img2=img.reshape([-1,W*nrow*nrow,H])
|
69 |
+
# [:,:28*5,:],img:(1,140,28)
|
70 |
+
img=img2[:,:W*nrow,:]
|
71 |
+
for i in range(1,nrow):#[1,5)
|
72 |
+
'''
|
73 |
+
img(1,140,28),img2(1,700,28)
|
74 |
+
img从(1,140,28)->(1,140,28+28)->...->(1,140,28+28+28+28)=(1,140,140)
|
75 |
+
np.concatenate把两个三维数组合并
|
76 |
+
'''
|
77 |
+
img=np.concatenate([img,img2[:,W*nrow*i:W*nrow*(i+1),:]],axis=2)
|
78 |
+
# img中的数据大小从(-1,1)--(+1)-->(0,2)--(/2)-->(0,1)--(*255)-->(0,255)转换成了像素值
|
79 |
+
img=(img+1.0)/2.0*255
|
80 |
+
# (1,140,140)--->(140,140,1)
|
81 |
+
# (channels通道数,imagesize,imagesize)转化为(imagesize,imagesize,channels通道数)
|
82 |
+
img=img.transpose((1,2,0))
|
83 |
+
if path:
|
84 |
+
# 根据地址保存图片样本数据
|
85 |
+
cv2.imwrite(path,img)
|
86 |
+
cv2.imshow('1',img)
|
87 |
+
cv2.waitKey(0)
|
88 |
+
|
89 |
+
# 初始化生成器和判别器,并加载模型
|
90 |
+
generator = Generator()
|
91 |
+
g_model_path = "saved_models/generator_last.pkl"
|
92 |
+
generator.load_parameters(jt.load(g_model_path))
|
93 |
+
generator.load(g_model_path)
|
94 |
+
discriminator = Discriminator()
|
95 |
+
d_model_path = "saved_models/discriminator_last.pkl"
|
96 |
+
discriminator.load_parameters(jt.load(d_model_path))
|
97 |
+
discriminator.load(d_model_path)
|
98 |
+
|
99 |
+
z = jt.array(np.random.normal(0, 1, (64, opt.latent_dim)).astype(np.float32))
|
100 |
+
gen_imgs = generator(z)
|
101 |
+
deal_image(gen_imgs.data[:25], "images_test/1.png",nrow=5)
|