Transformers
PyTorch
luke
File size: 6,228 Bytes
5b0e69b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23dbd7b
5b0e69b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23dbd7b
5b0e69b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
---

license: apache-2.0

---
# Model Card for luke-large-finetuned-conll-2003
 
 
 
# Model Details
 
## Model Description
 
LUKE (Language Understanding with Knowledge-based Embeddings) is a new pretrained contextualized representation of words and entities based on transformer.
 
- **Developed by:** Studio Ousia
- **Shared by [Optional]:** More information needed
- **Model type:** EntitySpanClassification
- **Language(s) (NLP):** More information needed
- **License:** Apache-2.0
- **Related Models:** [Luke-large](https://huggingface.co/studio-ousia/luke-large?text=Paris+is+the+%3Cmask%3E+of+France.)
  - **Parent Model:** Luke
- **Resources for more information:** 
    - [GitHub Repo](https://github.com/studio-ousia/luke)
 	 - [Associated Paper](https://arxiv.org/abs/2010.01057)
 
# Uses
 
 
## Direct Use
 
More information needed
 
## Downstream Use [Optional]
 
This model can also be used for the task of named entity recognition, cloze-style question answering, fine-grained entity typing, extractive question answering.
 
## Out-of-Scope Use
 
The model should not be used to intentionally create hostile or alienating environments for people.
 
# Bias, Risks, and Limitations
 
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
 
 
## Recommendations
 
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
# Training Details
 
## Training Data
 
More information needed
 
## Training Procedure
 
 
### Preprocessing
 
More information needed
 
### Speeds, Sizes, Times
 
More information needed
 
# Evaluation
 
 
## Testing Data, Factors & Metrics
 
### Testing Data
 
More information needed
 
### Factors
 
 
### Metrics
 
LUKE achieves state-of-the-art results on five popular NLP benchmarks including
* **[SQuAD v1.1](https://rajpurkar.github.io/SQuAD-explorer/)** (extractive
question answering),
* **[CoNLL-2003](https://www.clips.uantwerpen.be/conll2003/ner/)** (named entity
recognition), **[ReCoRD](https://sheng-z.github.io/ReCoRD-explorer/)**
(cloze-style question answering),
* **[TACRED](https://nlp.stanford.edu/projects/tacred/)** (relation
classification), and
* **[Open Entity](https://www.cs.utexas.edu/~eunsol/html_pages/open_entity.html)** (entity typing).
 
## Results 
 
The experimental results are provided as follows:
 
| Task                           | Dataset                                                                      | Metric | LUKE-large        | luke-base | Previous SOTA                                                             |
| ------------------------------ | ---------------------------------------------------------------------------- | ------ | ----------------- | --------- | ------------------------------------------------------------------------- |
| Extractive Question Answering  | [SQuAD v1.1](https://rajpurkar.github.io/SQuAD-explorer/)                    | EM/F1  | **90.2**/**95.4** | 86.1/92.3 | 89.9/95.1 ([Yang et al., 2019](https://arxiv.org/abs/1906.08237))         |
| Named Entity Recognition       | [CoNLL-2003](https://www.clips.uantwerpen.be/conll2003/ner/)                 | F1     | **94.3**          | 93.3      | 93.5 ([Baevski et al., 2019](https://arxiv.org/abs/1903.07785))           |
| Cloze-style Question Answering | [ReCoRD](https://sheng-z.github.io/ReCoRD-explorer/)                         | EM/F1  | **90.6**/**91.2** | -         | 83.1/83.7 ([Li et al., 2019](https://www.aclweb.org/anthology/D19-6011/)) |
| Relation Classification        | [TACRED](https://nlp.stanford.edu/projects/tacred/)                          | F1     | **72.7**          | -         | 72.0 ([Wang et al. , 2020](https://arxiv.org/abs/2002.01808))             |
| Fine-grained Entity Typing     | [Open Entity](https://www.cs.utexas.edu/~eunsol/html_pages/open_entity.html) | F1     | **78.2**          | -         | 77.6 ([Wang et al. , 2020](https://arxiv.org/abs/2002.01808))             |
 
 
Please check the [Github repository](https://github.com/studio-ousia/luke) for more details and updates.
 
 
 
# Model Examination
 
More information needed
 
# Environmental Impact
 
 
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
- **Hardware Type:** More information needed
- **Hours used:** More information needed
- **Cloud Provider:** More information needed
- **Compute Region:** More information needed
- **Carbon Emitted:** More information needed
 
# Technical Specifications [optional]
 
## Model Architecture and Objective
 
More information needed
 
## Compute Infrastructure
 
More information needed
 
### Hardware
 
* transformers_version: 4.6.0.dev0
 
### Software
More information needed
 
# Citation
 
 
**BibTeX:**
 ```
@inproceedings{yamada2020luke,
  title={LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention},
  author={Ikuya Yamada and Akari Asai and Hiroyuki Shindo and Hideaki Takeda and Yuji Matsumoto},
  booktitle={EMNLP},
  year={2020}
}
```
 
 
# Glossary [optional]
More information needed
 
# More Information [optional]
 
More information needed
 
# Model Card Authors [optional]
 
 
Studio Ousia in collaboration with Ezi Ozoani and the Hugging Face team
 
# Model Card Contact
 
More information needed
 
# How to Get Started with the Model
 
Use the code below to get started with the model.
 
<details>
<summary> Click to expand </summary>

```python
from transformers import AutoTokenizer, LukeForEntitySpanClassification
 
tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003")
 
model = LukeForEntitySpanClassification.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003")
```
</details>