Model save
Browse files- README.md +24 -27
- model.safetensors +1 -1
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -73,29 +73,26 @@ The following hyperparameters were used during training:
|
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
-
- num_epochs:
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.0565 | 8.4 | 7500 | 0.1487 | 0.8377 | 0.8809 | 0.8587 | 0.9730 |
|
97 |
-
| 0.0497 | 8.96 | 8000 | 0.1416 | 0.8473 | 0.8784 | 0.8626 | 0.9740 |
|
98 |
-
| 0.0484 | 9.52 | 8500 | 0.1467 | 0.8492 | 0.8749 | 0.8619 | 0.9732 |
|
99 |
|
100 |
|
101 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.8675623800383877
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.8972704714640198
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.8821663820444011
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9754391100702576
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.1456
|
48 |
+
- Precision: 0.8676
|
49 |
+
- Recall: 0.8973
|
50 |
+
- F1: 0.8822
|
51 |
+
- Accuracy: 0.9754
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 8
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.3439 | 0.56 | 500 | 0.1575 | 0.7882 | 0.8015 | 0.7948 | 0.9605 |
|
83 |
+
| 0.1636 | 1.12 | 1000 | 0.1242 | 0.8071 | 0.8432 | 0.8248 | 0.9699 |
|
84 |
+
| 0.1347 | 1.68 | 1500 | 0.1246 | 0.8273 | 0.8486 | 0.8378 | 0.9688 |
|
85 |
+
| 0.105 | 2.24 | 2000 | 0.1276 | 0.8428 | 0.8645 | 0.8535 | 0.9727 |
|
86 |
+
| 0.0942 | 2.8 | 2500 | 0.1263 | 0.8412 | 0.8809 | 0.8606 | 0.9734 |
|
87 |
+
| 0.0778 | 3.36 | 3000 | 0.1178 | 0.8550 | 0.8779 | 0.8663 | 0.9746 |
|
88 |
+
| 0.0696 | 3.92 | 3500 | 0.1168 | 0.8491 | 0.8878 | 0.8680 | 0.9738 |
|
89 |
+
| 0.0565 | 4.48 | 4000 | 0.1135 | 0.8377 | 0.8734 | 0.8552 | 0.9734 |
|
90 |
+
| 0.0532 | 5.04 | 4500 | 0.1218 | 0.8673 | 0.8888 | 0.8779 | 0.9752 |
|
91 |
+
| 0.0451 | 5.6 | 5000 | 0.1339 | 0.8613 | 0.8878 | 0.8744 | 0.9751 |
|
92 |
+
| 0.0396 | 6.16 | 5500 | 0.1339 | 0.8595 | 0.8864 | 0.8727 | 0.9751 |
|
93 |
+
| 0.0331 | 6.72 | 6000 | 0.1361 | 0.8617 | 0.8933 | 0.8772 | 0.9755 |
|
94 |
+
| 0.0263 | 7.28 | 6500 | 0.1450 | 0.8720 | 0.8958 | 0.8837 | 0.9758 |
|
95 |
+
| 0.0278 | 7.84 | 7000 | 0.1456 | 0.8676 | 0.8973 | 0.8822 | 0.9754 |
|
|
|
|
|
|
|
96 |
|
97 |
|
98 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2235473356
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e06ec6b49126728d0e47418939be78fec5952aaf02985838a46f274198ec753
|
3 |
size 2235473356
|