stulcrad commited on
Commit
91af60b
·
verified ·
1 Parent(s): 8e39da9

Model save

Browse files
Files changed (1) hide show
  1. README.md +99 -0
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: FacebookAI/xlm-roberta-large
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - cnec
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: CNEC2_0_extended_xlm-roberta-large
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: cnec
21
+ type: cnec
22
+ config: default
23
+ split: validation
24
+ args: default
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.8721153846153846
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.9002481389578164
32
+ - name: F1
33
+ type: f1
34
+ value: 0.8859584859584859
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9766100702576113
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # CNEC2_0_extended_xlm-roberta-large
44
+
45
+ This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.1464
48
+ - Precision: 0.8721
49
+ - Recall: 0.9002
50
+ - F1: 0.8860
51
+ - Accuracy: 0.9766
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 8
72
+ - eval_batch_size: 8
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 12
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.2193 | 1.12 | 1000 | 0.1389 | 0.7636 | 0.8194 | 0.7905 | 0.9628 |
83
+ | 0.1528 | 2.24 | 2000 | 0.1285 | 0.8106 | 0.8600 | 0.8346 | 0.9678 |
84
+ | 0.119 | 3.36 | 3000 | 0.1278 | 0.8234 | 0.8491 | 0.8361 | 0.9679 |
85
+ | 0.0904 | 4.48 | 4000 | 0.1104 | 0.8466 | 0.8680 | 0.8571 | 0.9747 |
86
+ | 0.0768 | 5.6 | 5000 | 0.1269 | 0.8486 | 0.8819 | 0.8649 | 0.9734 |
87
+ | 0.0709 | 6.72 | 6000 | 0.1293 | 0.8601 | 0.8878 | 0.8737 | 0.9759 |
88
+ | 0.0586 | 7.84 | 7000 | 0.1404 | 0.8624 | 0.8928 | 0.8773 | 0.9753 |
89
+ | 0.0486 | 8.96 | 8000 | 0.1445 | 0.8675 | 0.9002 | 0.8836 | 0.9766 |
90
+ | 0.0488 | 10.08 | 9000 | 0.1467 | 0.8608 | 0.8963 | 0.8782 | 0.9753 |
91
+ | 0.035 | 11.2 | 10000 | 0.1464 | 0.8721 | 0.9002 | 0.8860 | 0.9766 |
92
+
93
+
94
+ ### Framework versions
95
+
96
+ - Transformers 4.36.2
97
+ - Pytorch 2.1.2+cu121
98
+ - Datasets 2.16.1
99
+ - Tokenizers 0.15.0