Model save
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -73,22 +73,29 @@ The following hyperparameters were used during training:
|
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
-
- num_epochs:
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
-
| Training Loss | Epoch | Step
|
81 |
-
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
|
94 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.8543457497612226
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.8878411910669975
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.8707714772450719
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9749707259953162
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.1492
|
48 |
+
- Precision: 0.8543
|
49 |
+
- Recall: 0.8878
|
50 |
+
- F1: 0.8708
|
51 |
+
- Accuracy: 0.9750
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 10
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.4615 | 0.56 | 500 | 0.1970 | 0.6988 | 0.7057 | 0.7022 | 0.9497 |
|
83 |
+
| 0.2127 | 1.12 | 1000 | 0.1455 | 0.7812 | 0.8238 | 0.8019 | 0.9626 |
|
84 |
+
| 0.1765 | 1.68 | 1500 | 0.1284 | 0.8042 | 0.8357 | 0.8197 | 0.9674 |
|
85 |
+
| 0.149 | 2.24 | 2000 | 0.1307 | 0.8250 | 0.8541 | 0.8393 | 0.9698 |
|
86 |
+
| 0.1286 | 2.8 | 2500 | 0.1214 | 0.8178 | 0.8600 | 0.8384 | 0.9717 |
|
87 |
+
| 0.1172 | 3.36 | 3000 | 0.1271 | 0.8285 | 0.8536 | 0.8409 | 0.9716 |
|
88 |
+
| 0.1115 | 3.92 | 3500 | 0.1290 | 0.8305 | 0.8586 | 0.8443 | 0.9726 |
|
89 |
+
| 0.0978 | 4.48 | 4000 | 0.1251 | 0.8321 | 0.8630 | 0.8473 | 0.9736 |
|
90 |
+
| 0.0907 | 5.04 | 4500 | 0.1301 | 0.8417 | 0.8710 | 0.8561 | 0.9742 |
|
91 |
+
| 0.0812 | 5.6 | 5000 | 0.1235 | 0.8365 | 0.8630 | 0.8495 | 0.9721 |
|
92 |
+
| 0.0755 | 6.16 | 5500 | 0.1269 | 0.8201 | 0.8685 | 0.8436 | 0.9727 |
|
93 |
+
| 0.0647 | 6.72 | 6000 | 0.1325 | 0.8490 | 0.8789 | 0.8637 | 0.9742 |
|
94 |
+
| 0.0589 | 7.28 | 6500 | 0.1373 | 0.8529 | 0.8774 | 0.8650 | 0.9746 |
|
95 |
+
| 0.0559 | 7.84 | 7000 | 0.1419 | 0.8463 | 0.8824 | 0.8639 | 0.9747 |
|
96 |
+
| 0.0549 | 8.4 | 7500 | 0.1400 | 0.8444 | 0.8834 | 0.8634 | 0.9745 |
|
97 |
+
| 0.0479 | 8.96 | 8000 | 0.1462 | 0.8530 | 0.8844 | 0.8684 | 0.9752 |
|
98 |
+
| 0.0462 | 9.52 | 8500 | 0.1492 | 0.8543 | 0.8878 | 0.8708 | 0.9750 |
|
99 |
|
100 |
|
101 |
### Framework versions
|