--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC2_0_extended_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8675623800383877 - name: Recall type: recall value: 0.8972704714640198 - name: F1 type: f1 value: 0.8821663820444011 - name: Accuracy type: accuracy value: 0.9754391100702576 --- # CNEC2_0_extended_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.1456 - Precision: 0.8676 - Recall: 0.8973 - F1: 0.8822 - Accuracy: 0.9754 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3439 | 0.56 | 500 | 0.1575 | 0.7882 | 0.8015 | 0.7948 | 0.9605 | | 0.1636 | 1.12 | 1000 | 0.1242 | 0.8071 | 0.8432 | 0.8248 | 0.9699 | | 0.1347 | 1.68 | 1500 | 0.1246 | 0.8273 | 0.8486 | 0.8378 | 0.9688 | | 0.105 | 2.24 | 2000 | 0.1276 | 0.8428 | 0.8645 | 0.8535 | 0.9727 | | 0.0942 | 2.8 | 2500 | 0.1263 | 0.8412 | 0.8809 | 0.8606 | 0.9734 | | 0.0778 | 3.36 | 3000 | 0.1178 | 0.8550 | 0.8779 | 0.8663 | 0.9746 | | 0.0696 | 3.92 | 3500 | 0.1168 | 0.8491 | 0.8878 | 0.8680 | 0.9738 | | 0.0565 | 4.48 | 4000 | 0.1135 | 0.8377 | 0.8734 | 0.8552 | 0.9734 | | 0.0532 | 5.04 | 4500 | 0.1218 | 0.8673 | 0.8888 | 0.8779 | 0.9752 | | 0.0451 | 5.6 | 5000 | 0.1339 | 0.8613 | 0.8878 | 0.8744 | 0.9751 | | 0.0396 | 6.16 | 5500 | 0.1339 | 0.8595 | 0.8864 | 0.8727 | 0.9751 | | 0.0331 | 6.72 | 6000 | 0.1361 | 0.8617 | 0.8933 | 0.8772 | 0.9755 | | 0.0263 | 7.28 | 6500 | 0.1450 | 0.8720 | 0.8958 | 0.8837 | 0.9758 | | 0.0278 | 7.84 | 7000 | 0.1456 | 0.8676 | 0.8973 | 0.8822 | 0.9754 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0