--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC2_0_extended_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8543457497612226 - name: Recall type: recall value: 0.8878411910669975 - name: F1 type: f1 value: 0.8707714772450719 - name: Accuracy type: accuracy value: 0.9749707259953162 --- # CNEC2_0_extended_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.1492 - Precision: 0.8543 - Recall: 0.8878 - F1: 0.8708 - Accuracy: 0.9750 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4615 | 0.56 | 500 | 0.1970 | 0.6988 | 0.7057 | 0.7022 | 0.9497 | | 0.2127 | 1.12 | 1000 | 0.1455 | 0.7812 | 0.8238 | 0.8019 | 0.9626 | | 0.1765 | 1.68 | 1500 | 0.1284 | 0.8042 | 0.8357 | 0.8197 | 0.9674 | | 0.149 | 2.24 | 2000 | 0.1307 | 0.8250 | 0.8541 | 0.8393 | 0.9698 | | 0.1286 | 2.8 | 2500 | 0.1214 | 0.8178 | 0.8600 | 0.8384 | 0.9717 | | 0.1172 | 3.36 | 3000 | 0.1271 | 0.8285 | 0.8536 | 0.8409 | 0.9716 | | 0.1115 | 3.92 | 3500 | 0.1290 | 0.8305 | 0.8586 | 0.8443 | 0.9726 | | 0.0978 | 4.48 | 4000 | 0.1251 | 0.8321 | 0.8630 | 0.8473 | 0.9736 | | 0.0907 | 5.04 | 4500 | 0.1301 | 0.8417 | 0.8710 | 0.8561 | 0.9742 | | 0.0812 | 5.6 | 5000 | 0.1235 | 0.8365 | 0.8630 | 0.8495 | 0.9721 | | 0.0755 | 6.16 | 5500 | 0.1269 | 0.8201 | 0.8685 | 0.8436 | 0.9727 | | 0.0647 | 6.72 | 6000 | 0.1325 | 0.8490 | 0.8789 | 0.8637 | 0.9742 | | 0.0589 | 7.28 | 6500 | 0.1373 | 0.8529 | 0.8774 | 0.8650 | 0.9746 | | 0.0559 | 7.84 | 7000 | 0.1419 | 0.8463 | 0.8824 | 0.8639 | 0.9747 | | 0.0549 | 8.4 | 7500 | 0.1400 | 0.8444 | 0.8834 | 0.8634 | 0.9745 | | 0.0479 | 8.96 | 8000 | 0.1462 | 0.8530 | 0.8844 | 0.8684 | 0.9752 | | 0.0462 | 9.52 | 8500 | 0.1492 | 0.8543 | 0.8878 | 0.8708 | 0.9750 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0