--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC2_0_extended_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8860882210373243 - name: Recall type: recall value: 0.9071960297766749 - name: F1 type: f1 value: 0.8965179009318294 - name: Accuracy type: accuracy value: 0.9772540983606557 --- # CNEC2_0_extended_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.1919 - Precision: 0.8861 - Recall: 0.9072 - F1: 0.8965 - Accuracy: 0.9773 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1664 | 1.12 | 1000 | 0.1312 | 0.8299 | 0.8521 | 0.8408 | 0.9695 | | 0.1153 | 2.24 | 2000 | 0.1121 | 0.8283 | 0.8640 | 0.8458 | 0.9722 | | 0.0815 | 3.36 | 3000 | 0.1159 | 0.8523 | 0.8531 | 0.8527 | 0.9735 | | 0.0633 | 4.48 | 4000 | 0.1166 | 0.8515 | 0.8819 | 0.8664 | 0.9750 | | 0.0472 | 5.6 | 5000 | 0.1624 | 0.8635 | 0.8918 | 0.8774 | 0.9735 | | 0.0369 | 6.72 | 6000 | 0.1476 | 0.8710 | 0.8983 | 0.8844 | 0.9770 | | 0.0325 | 7.84 | 7000 | 0.1590 | 0.8710 | 0.8943 | 0.8825 | 0.9752 | | 0.0268 | 8.96 | 8000 | 0.1698 | 0.8709 | 0.9037 | 0.8870 | 0.9761 | | 0.0236 | 10.08 | 9000 | 0.1721 | 0.8807 | 0.9087 | 0.8945 | 0.9763 | | 0.0125 | 11.2 | 10000 | 0.1843 | 0.8781 | 0.9047 | 0.8912 | 0.9768 | | 0.009 | 12.32 | 11000 | 0.1971 | 0.8789 | 0.9077 | 0.8931 | 0.9766 | | 0.0097 | 13.44 | 12000 | 0.1823 | 0.8857 | 0.9077 | 0.8966 | 0.9775 | | 0.0077 | 14.56 | 13000 | 0.1919 | 0.8861 | 0.9072 | 0.8965 | 0.9773 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0